
Clarke Transform in a Nutshell
Cheat Sheet for mathematical modelling of continuum robots with n symmetrical arranged displacement-actuated joints.

Schematics of a displacement-actuated robot:

Its sufficient smooth center-line has length l. Each of
the displacement-actuated joint ρi are equal distributed
described by ψi = 2π(i− 1)/n and di = d > 0.

Commutative diagram-like overview:

To circumvent the explicit consideration of the displace-
ment constraint, i.e.,

∑
ρi = 0, approaches and methods

should be considered on the two-dimensional manifold
embedded in the n-dimensional joint space. For the
transform, linear maps MP and M−1

P are used and any
output denoted by (ρ∗Re, ρ

∗
Im) can subsequently mapped

back leading to ρ∗.

General setup and idea
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Generalized inverse Clarke transformation matrix:
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Representation of ith displacement:

ρi = ρRe cosψi + ρIm sinψi

Kirchhoff’s rule is the displacement constraint:∑n
i=1 ρi = 0

Set of displacement-actuated joint values:

ρ =
[
ρ1 ρ2 · · · ρn−1 ρn

]⊤
Clarke coordinates as vector:

ρ =
[
ρRe ρIm

]⊤
The Clarke transform of ρ and ρ, respectively:

ρ = MPρ and ρ = M−1
P ρ

Two-dimensional Manifold embedded in the joint space:

Q =
{
(ρ1, · · · , ρn) ∈ Rn

∣∣ ∀i ∈ [1, n] ⊂ N :

ρi = ρRe cosψi + ρIm sinψi ∧
(ρRe, ρIm) ∈ R2

}

Clarke transform and Clarke coordinates

Linearity of MP and M−1
P :
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P is the right-inverse of MP :

MPM
−1
P = I2×2 and M−1

P MP ̸= In×n

Toeplitz matrix:
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∈ Rn×n

Toeplitz matrix is an idempotent matrix:(
M−1

P MP
)k

= M−1
P MP for k > 0

Toeplitz matrix is singular:

detM−1
P MP = 0

Transpose:

M⊤
P =

2

n
M−1

P

Vanishing bias term:

MP11×n = 01×2,

where 11×n has ones everywhere and 01×2 has zeros
everywhere.

Selecting a mode:

MP1
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,

where 1
(k)
1×n is a one-hot vector defined by the kth element

to be a one, whereas the all other elements are zero.

Properties



The sum of squares:

ρ2Re + ρ2Im = ρ⊤ρ = ρ⊤M⊤
PMPρ

Scaled magnitude:

ρ⊤ρ =
2

n
ρ⊤ρ

Transform a unit circle:

M−1
P

[
cos (α) sin (α)

]⊤
= (cos (ψi − α))i,1

Visual aid and geometric interpretation:

Tracing the tip of all possible displacement parameteri-
zed by ψ ∈ [0, 2π) creates an ellipse. Its semi-major and
semi-minor axes are

√
d2 + ρ2Re + ρ2Im and d length, res-

pectively. The maximum displacement achievable coin-
cides with the angle α.

Normalized displacement-actuated joints:

ρ̂ =
ρ√
ρ⊤ρ

To avoid singularities, add a sufficient small ϵ > 0 with
ϵ2 ≈ 0 to the magnitude, i.e.,

√
ρ⊤ρ+ ϵ

Properties cont’d

Useful trigonometric identities for ψi =
2π

n
(i− 1):

n∑
i=1

sin (ψi) = 0,

n∑
i=1

sin2 (ψi) =
n

2
,
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cos (ψi) = 0,

n∑
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,

and

n∑
i=1

sin (ψi) cos (ψi) = 0

Trigonometric Identities

Physical interpretation of the Clarke coordinates:

The magenta line lies within the bending plane. The
length difference to the arc length is the virtual displa-
cement. The yellow arrows are the projected virtual dis-
placements and lie within the respective projected plane
corresponding to xz-plane and yz-plane of the base.

Relation to arc space:

MPρ =
[
ρRe ρIm

]⊤
= ld

[
κ cos (θ) κ sin (θ)

]⊤
The design parameters, i.e., segment length l and joint
location (ϕi, di), are removed, i.e.,

[
κ cos (θ)
κ sin (θ)

]
= 1/ l︸︷︷︸

removes l

removes ψi︷︸︸︷
MP diag (1/di)︸ ︷︷ ︸

removes di

ρ.

For its inverse, the design parameters are added, i.e.,

ρ = l︸︷︷︸
adds l

adds di︷ ︸︸ ︷
diag (di) M−1

P︸ ︷︷ ︸
adds ψi

[
κ cos (θ)
κ sin (θ)

]
.

For both formulation, the assumption di = d has been
removed.

Arc space and virtual displacement

Schematics of a tendon-driven continuum robot:

Application to tendon control:

Reducing the design effort and the computational cost
by choosing a suitable space to formulate the control
problem.

Control schema:

Displacement-control of n displacements using Clarke
transform. Both proportional feedback controller with
precompensation are sandwich by MP and M−1

P .

Application to tendon-driven continuum robot

2


