Clarke Transform in a Nutshell

Cheat Sheet for mathematical modelling of continuum robots with n symmetrical arranged displacement-actuated joints.

General setup and idea

Schematics of a displacement-actuated robot:
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Its sufficient smooth center-line has length [. Each of
the displacement-actuated joint p; are equal distributed
described by ¢; = 2n(i — 1)/n and d; = d > 0.

Commutative diagram-like overview:
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To circumvent the explicit consideration of the displace-
ment constraint, i.e., Y p; = 0, approaches and methods
should be considered on the two-dimensional manifold
embedded in the n-dimensional joint space. For the
transform, linear maps M p and M 7_;1 are used and any
output denoted by (pf., pf,,) can subsequently mapped
back leading to p*.

Generalized Clarke transformation matrix:
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Generalized inverse Clarke transformation matrix:
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Representation of i*" displacement:

2
Mp==
n

n—
cos | 2w
L n

Pi = PRe COSY; + Prm SINY;
Kirchhoff’s rule is the displacement constraint:
i1 pi=0

Set of displacement-actuated joint values:
-
pP= [Pl P2 Pn—1 Pn]

Clarke coordinates as vector:
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The Clarke transform of p and p, respectively:
p=Mpp and p=M;'p
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Clarke transform and Clarke coordinates

Two-dimensional Manifold embedded in the joint space:

Linearity of Mp and M;lz
MPZF%‘ :ZMPPZ‘ = Zﬁi
Mp!Y =3 Mp'pi=> p

M;l is the right-inverse of M p:
MpM3' =1Isyo and Mz'Mp # Ixn

Toeplitz matrix:
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Toeplitz matrix is an idempotent matrix:
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Toeplitz matrix is singular:
det Mp'Mp =0

Transpose:

Vanishing bias term:
Mplixn = 01x2,

where 174, has ones everywhere and 01«2 has zeros
everywhere.

Selecting a mode:

-
-1 -1

Mp]l(k) = {cos (27rk ) sin (27rk )} ,
n n

Ixn

where ]l(lkx)n is a one-hot vector defined by the k' element

to be a one, whereas the all other elements are zero.




Properties cont’d

The sum of squares:
Phe+ Pim =P P=p MiMpp
Scaled magnitude:
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Transform a unit circle:
M;l [cos (o) sin (oz)]T = (cos (¢; — oz))i’1

Visual aid and geometric interpretation:

Tracing the tip of all possible displacement parameteri-
zed by 1 € [0, 27) creates an ellipse. Its semi-major and

semi-minor axes are \/d? + p%, + p7,, and d length, res-

pectively. The maximum displacement achievable coin-
cides with the angle «.
Normalized displacement-actuated joints:
p=-—L_
p'p

To avoid singularities, add a sufficient small € > 0 with
€2 ~ 0 to the magnitude, i.e., \/p'p+ €

Trigonometric Identities
27 .

Useful trigonometric identities for ¢; = — (i — 1):
n
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and isin (1) cos (1) =0
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Arc space and virtual displacement

Physical interpretation of the Clarke coordinates:
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The magenta line lies within the bending plane. The
length difference to the arc length is the virtual displa-
cement. The yellow arrows are the projected virtual dis-
placements and lie within the respective projected plane
corresponding to xz-plane and yz-plane of the base.

arc centre

Relation to arc space:
T . T
Mpp = [,DRe phn] =1d [n cos (f) ksin (9)]
The design parameters, i.e., segment length [ and joint

location (¢, d;), are removed, i.e.,
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removes | removes d;

For its inverse, the design parameters are added, i.e.,
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For both formulation, the assumption d; = d has been
removed.

Application to tendon-driven continuum robot

Schematics of a tendon-driven continuum robot:
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Application to tendon control:
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Reducing the design effort and the computational cost
by choosing a suitable space to formulate the control
problem.

Control schema:
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Displacement-control of n displacements using Clarke
transform. Both proportional feedback controller with
precompensation are sandwich by Mp and M 7;1.




