
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019 1

Quaternion-based Smooth Trajectory Generator for Via Poses in
SE(3) Considering Kinematic Limits in Cartesian Space

Reinhard M. Grassmann and Jessica Burgner-Kahrs, Senior Member, IEEE

Abstract—Smooth position and orientation interpolation has a
great effect on the performance of robot manipulators. Interpo-
lation between several via positions can be done in a straightfor-
ward manner, which is well covered in the literature. However,
generating a suitable trajectory between several orientations
is still an open problem. In this paper, we introduce a novel
trajectory generator capable of respecting kinematic limits. We
address the problem of generating a singularity-free trajectory
for multiple via poses in SE(3), while complying with the re-
quirement of C4 continuity. To achieve this, a smooth trapezoidal-
like velocity profile and unit quaternions are used. A simulation
platform in V-REP based on a 7-DOF (degree of freedom)
lightweight robot including inverse kinematics and dynamics is
used to demonstrate the effectiveness of our trajectory generator.

Index Terms—Flexible Robots, Formal Methods in Robotics
and Automation, Industrial Robots, Motion and Path Planning

I. INTRODUCTION

REGARDING human-robot-collaboration, generated tra-
jectories of a robot manipulators should be intuitive and

predictable for human co-workers. Therefore, the geometric
path of the position and orientation is planned in Cartesian
space. Furthermore, it is important to guarantee accurate
motion to perform a task in the presence of human co-workers
and for general application. Hence, kinematic limits have to
be considered. Smooth position interpolation between several
via points is straightforward. Surprisingly, smooth orientation
interpolation in SO(3) between several orientations, while
complying with the requirement of being smooth and re-
specting kinematic limits, is still an open problem. A curve
constructed in R3 may not turn out smoothly in SO(3) because
many common geometric approaches do not properly account
for the geometry of SO(3). Consequently, no satisfactory
solution to pose interpolation in SE(3) combining position
and orientation has been presented yet.

A. Related Work

The generation of trajectories is well covered by standard
robotics textbooks, such as [4] and [23]. Moreover, it is
extensively studied in [3] and [15]. However, most of the
trajectories in literature are designed for industrial robots and

Manuscript received: February 24, 2019; Revised May 26, 2019; Accepted
June 27, 2019.

This paper was recommended for publication by Editor Nancy Amato upon
evaluation of the Associate Editor and Reviewers’ comments.

Both authors are with Continuum Robotics Laboratory, Depart-
ment of Computer Science, University of Toronto, Toronto, Canada
reinhard.grassmann@utoronto.ca

This work has been conducted, when all authors were still with Laboratory
for Continuum Robotics at Gottfried Wilhelm Leibniz Universität Hannover,
Hanover 30167, Germany.

Digital Object Identifier (DOI): see top of this page.

show at most C2 smoothness or less. As stated in [7], for ma-
nipulators with mechanical flexibility, such as common light-
weight robots, e.g. [11] and [1], the minimum requirement
for the exact reproducibility of the desired trajectory is that it
admits a continuously differentiable jerk, i.e. it is at least C4
smooth. A smooth trajectory is an essential requirement for
avoiding structural oscillations, [3], [25], improving accuracy
in tracking of the end effector [7], and reducing energy
consumption [14], [20]. Smooth trajectories are also perceived
more natural [25], which is beneficial in the context of human-
robot-collaboration. Further, trajectories in Cartesian space are
mostly designed for position neglecting orientation.

Interpolation of orientation is only rarely treated. According
to [3], interpolation is often based on a set of three angles, i.e.
Euler angles. Euler angles are a widely used SO(3) represen-
tation. However, the interpolation of each of the twelve sets
of Euler angles can result in a singularity, i.e. Gimbal Lock.
Furthermore, it leads to undesirable trajectories which are nei-
ther intuitive nor predictable for human co-workers. Regarding
kinematic limits, Euler angles cannot express kinematic limits
in algebraic form which makes it an undesirable orientation
parameterization [16].

It is indeed well-known and accepted that quaternions are
best suited for representing [24], [5] as well as interpolating
[9] orientations. Therefore, SLERP (spherical linear interpo-
lation) [22], the gold-standard for interpolation between two
orientations, has been extended to SQUAD (spherical and
quadrangle), which is applied to an industrial robot in [17].
However, SQUAD generates C1 smooth orientation trajectories
[5]. Further, it is unclear how to consider kinematic limits.
Other adaptation of SLERP can be found in [6] and in
[26]. In [18] a method based on the exponential mapping of
quaternions where its argument is evaluated by B-splines is
proposed. In [18], however, only path planning is discussed
and a quadratic optimization problem has to be formulated. In
[21] an algorithm to generate C2 smooth interpolations based
on quaternionic polynomials is proposed. The component-
wise quaternion interpolation treats quaternions as a vector in
Euclidean space leading to a wrong treatment of the special
orthogonal group SO(3) and enforcing a re-normalization at
each execution. In computer graphics, several interpolation
methods, e.g. [2], [13], [19], can be found. However, none
of these approaches are suitable for robotic application.

Generally, in order to design the desired path, geometric
paths for the translation and orientation components are de-
fined separately and synchronized afterwards. Without a sepa-
rate definition, an undesired screw motion could be generated
and its translation component is generally not a straight path
[25]. Hence, approaches in SE(3) without separation into
E(3) and SO(3) are neglected in this paper.

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

To the best of our knowledge, no pose interpolator satis-
fying the requirement of smooth interpolation across multiple
orientations and positions exists. Furthermore, no orientation
interpolation, which can consider a priori kinematic limits, is
available.

B. Problem Statement

This paper assumes that a sequence of via poses in Cartesian
space is available. The studied problem is how to generate
a trajectory such that the robot can pass through the given
via poses, while complying with the requirement of being C4
smooth and respecting kinematic limits.

C. Contribution

In the present paper, we introduce an approach for pose
interpolation, where a sequence of via poses in SE(3) is
given. We propose a blending method leading to a trajectory
generator respecting defined kinematic limits. In particular, the
following contributions are made:
• A formalism extending the trajectory generator in

[10] to via poses and to asymmetric kinematic limits
w.r.t. acceleration and deceleration is provided.

• A blending method bridging two overlapping segments
for a C4 smooth trapezoidal-like velocity profile with
three segments is developed.

• A pose interpolator taking into account kinematic limits
such as maximum velocity, acceleration, and deceleration
is proposed.

• Generation of a geometric path on a unit-hypersphere in
SO(3) without requiring re-normalization and numeric
optimization being suitable for real time applications.

• A framework, which is straightforward to adapt to joint
space interpolation and to varied smoothness require-
ments.

II. METHODS

First, we define and extend the point-to-point (p2p) tra-
jectory for single DOF (degree of freedom) based on [10].
Second, the quaternion interpolation is recapped. Third, we
show how to synchronize arbitrary DOF. Afterwards, the
blending method is described in order to interpolate between
intermediate via poses. This section ends with assembling the
SE(3) trajectory generator.

A. Motion Law with C4 smoothness

In contrast to [10], the present motion law is asymmetric
w.r.t. acceleration and deceleration. Moreover, we introduce
variables, i.e. Ca,n and Cj,n, in order to generalize our
approach to Cn smoothness, where n ∈ N \ 0.

The following motion law is based on a trapezoidal-like
velocity profile with three segments. They are denoted as lift-
off, cruise, and set-down. As index we use the abbreviation lo,
cr, and sd, respectively.

In order to achieve a Cn smooth trajectory, the velocity
profile is designed with Cn−1 polynomial functions for the

first and third segment and a constant second segment with
durations Tlo, Tsd and Tcr, respectively. Furthermore, T :=
Tlo+Tcr+Tsd is the total trajectory duration. The coefficients
ai of the normalized polynomial vN,n (τ) ∈ [0, 1] depend on
the chosen smoothness and fulfill the null boundary condition,
meaning that any order of time derivation of vN,n (τ) is zero
at τ = 0 and τ = 1. The time primitive τ ∈ [0, 1] is defined
piece-wise by

τ(t) =

t

Tlo
for 0 ≤ t < Tlo

t− Tlo
Tcr

for Tlo ≤ t < Tlo + Tcr

t− Tlo − Tcr
Tsd

for Tlo + Tcr ≤ t ≤ T

, (1)

where the durations of the respective segments Tlo, Tcr, and
Tsd are properly defined in (12), (15), and (13), respectively.

In order to achieve a C4 smooth trajectory, we provide C3
smooth lift-off and set-down velocity segments including

vN,4 (τ) = −20τ7 + 70τ6 − 84τ5 + 35τ4. (2)

The coefficients of vN,n up to n = 11 are summarized in [3].
Now, the three segments of the velocity profile v(t) can be
defined. Considering (2), v(t) is piece-wise designed as

v(t) =

0 for t < 0

sign (L) vlo(t) for 0 ≤ t < Tlo

sign (L) vcr(t) for Tlo ≤ t < Tlo + Tcr

sign (L) vsd(t) for Tlo + Tcr ≤ t ≤ T
0 for T < t,

(3)

where sign(·) gives the sign of its argument and L is the total
displacement of the trajectory. The velocities are defined by

vlo(t) = λvmaxvN,4 (τ(t)) , (4)
vcr(t) = λvmax, and (5)
vsd(t) = λvmaxvN,4 (1− τ(t)) , (6)

where vmax > 0 is the maximum velocity and λ is a scaling
factor defined in (16). Note that the velocity vcr is constant
over the interval [Tlo, Tlo + Tcr].

The position profile is obtained by integrating (3) with (4),
(5), and (6), leading to the piece-wise motion law

s(t) =

0 for t < 0

sign (L) slo(t) for 0 ≤ t < Tlo

sign (L) scr(t) for Tlo ≤ t < Tlo + Tcr

sign (L) ssd(t) for Tlo + Tcr ≤ t ≤ T
L for T < t,

(7)

with

slo(t) = λvmaxTloVN,4 (τ(t)) , (8)
scr(t) = λvmax (Tcrτ(t) + Tlo/2) , and (9)
ssd(t) = |L| − λvmaxTsdVN,4 (1− τ(t)) , (10)

where |L| is the absolute value of the total displacement L
and VN,4 obtained by integrating (2) w.r.t. τ is defined as

VN,4 (τ) = −2.5τ8 + 10τ7 − 14τ6 + 7τ5. (11)

GRASSMANN et al.: QUATERNION-BASED SMOOTH TRAJECTORY GENERATOR FOR VIA POSES IN SE(3) CONSIDERING KINEMATIC LIMITS IN CARTESIAN SPACE3

Note that VN,4 ∈ [0, 0.5] is used on an interval [0, 1].
The durations of the respective segments are dependent on

the Cn smoothness and used VN,n. Considering a C4 smooth
trajectory, the durations are determined as follows. Computing
the maximum derivative of (4), which is an acceleration and
can be set equal to λamax, leads to

Tlo = Ca,4
vmax

amax
, (12)

where amax > 0 is the maximum acceleration. Analogously,

Tsd = Ca,4
vmax

dmax
(13)

determines the duration for the set-down segment, where
dmax > 0 is the maximum deceleration. The scaling factor
λ cancels out for the lift-off and set-down segment, leading to
a constant duration w.r.t. λ. In (12) and (13) a special case of
Ca,n (cf. Tab. I) is used, which is defined as

Ca,4 =
35

16
. (14)

The duration Tcr for the constant velocity part is given by

Tcr =
|L|

λvmax
− 1

2

(
1

amax
+

1

dmax

)
vmaxCa,4. (15)

Equation (15) can be found by combining and reordering the
sum of the lengths, which can be obtained from (8)-(10).

In case L is too short such that the maximum velocity
vmax cannot be reached, vmax is automatically adapted by the
scaling factor λ, which is defined as

λ =

1 for Tcr(λ = 1) ≥ 0
2amaxdmax |L|

(amax + dmax) v2maxCa,4
otherwise.

(16)

Therefore, if vmax, amax, and dmax can be reached, the
cruise segment with constant velocity, i.e. vmax, is executed,
otherwise the velocity profile is bell-shaped. Note that the
executed velocity is scaled directly (cf. (3)), while the executed
acceleration and deceleration is scaled indirectly (compare
with the derivation of (12) and (13)).

In order to compute the displacements of each segment, we
may evaluate the integral of (8) and (11) as well as subse-
quently substitute (12)-(15). Consequently, the displacements

Llo = λCa,4vmax
2 (2amax)

−1
, (17)

Lsd = λCa,4vmax
2 (2dmax)

−1
, and (18)

Lcr = |L| − Llo − Lsd (19)

can be computed accordingly. Now, we can compute all
necessary durations and displacements of each segment for
given kinematic limits and total displacement defined by the
start and goal state.

In Fig 1, trajectories generated by the motion law s(t) are
depicted. Note that s(t) is not a path primitive since it is not
generally defined for [0, 1] but for [0, |L|] instead, as it is not
independent of L.

In order to consider the maximum jerk jmax, we compute the
required times Tlo,jerk and Tsd,jerk. For the sake of simplicity,
we assume the same absolute value of the maximum jerk for
the lift-off and set-down segment being jmax. In the following,

Fig. 1. Course of position, velocity, acceleration, and jerk of si(t) with C4
smoothness and different total displacements L1 = 0.6m, L2 = 0.2734m
and L3 = 0.125m. The first trajectory s1(t) has a constant velocity segment,
while the second s2(t) does not. The third trajectory s3(t) is even shorter
and cannot reach vmax = 0.5m/s without violating amax = 2.25m/s2

and dmax = 1.5m/s2. Therefore, vmax is scaled by λ. The longer duration
guarantees that the kinematic limits amax and dmax are not violated. As can
be seen, all three trajectories have a smooth jerk profile.

we denote (12) and (13) by Tlo,acc and Tsd,dec, respectively.
Analogous to (12) and to (13) we may calculate

Tlo,jerk = Cj,4

√
vmax

jmax
and (20)

Tsd,jerk = Cj,4

√
vmax

jmax
, (21)

where Cj,4 is a special case of Cj,n (cf. Tab. I), which is

Cj,4 =

√
84

5
√
5
. (22)

The new duration of segment lift-off and set-down are then

Tlo = max (Tlo,jerk, Tlo,acc) and (23)
Tsd = max (Tsd,jerk, Tsd,dec) , (24)

respectively. Note that only either amax or jmax can be reached
and analogously for dmax.

In case that (20) or (21) is larger than (12) and (13),

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

TABLE I
DIMENSIONLESS CONSTANTS Ca,n AND Cj,n FOR VARIED Cn SMOOTHNESS DEPENDING ON vN,n .

n

2 3 4 5 6 7 8 9 10 11

Ca,n
3

2

15

8

35

16

315

128

693

256

3003

1024

6435

2048

109395

32768

230945

65536

969969

262144

Cj,n
√
6

√
10
√
3

√
84

5
√
5

√
1215

49
√
7

√
24640

2187

√
2559375

58564
√
11

√
20207880

371293
√
13

√
2002033033

30375000
√
15

√
32051036160

410338673
√
17

√
98891016919695

1086948034624
√
19

respectively, vmax, amax, and dmax, are recalculated by

vmax =
|L|

λ (Tcr + 0.5Tlo + 0.5Tsd)
, (25)

amax =
|L|

λ (Tcr + 0.5Tlo + 0.5Tsd)

Ca,4

Tlo
, and (26)

dmax =
|L|

λ (Tcr + 0.5Tlo + 0.5Tsd)

Ca,4

Tsd
, respectively, (27)

which can be derived from (12), (13), and (15), respectively.

B. Quaternion-based Trajectory Generator

We provide a self-contained description of orientation in-
terpolator which was first derived in our previous work [10]
including the relation to SLERP [22].

A unit quaternion is a hypercomplex number defined by

ξ = η + ε1ı+ ε2+ ε3k (28)

with property η2 + ε21 + ε22 + ε23 = 1, where ı, and k follow
Hamilton’s rule ı2 = 2 = k2 = ık = −1 [12]. Hence, it is a
linear combination of the real unit 1 and the three quaternionic
units ı, and k with associated real coefficients. A quaternionic
conjugate of ξ is defined as

ξ∗ = η − ε1ı− ε2− ε3k, (29)

which is also the inverse ξ−1 of a unit quaternion. The
associative and non-commutative product expands to

ξξ′ =(η + ε1ı+ ε2+ ε3k) (η
′ + ε′1ı+ ε′2+ ε′3k)

= (ηη′ − ε1ε′1 − ε2ε′2 − ε3ε′3)
+ (ηε′1 + η′ε1 + ε2ε

′
3 − ε′2ε3) ı

+ (ηε′2 + η′ε2 + ε3ε
′
1 − ε′3ε1)

+ (ηε′3 + η′ε3 + ε1ε
′
2 − ε′1ε2) k, (30)

where ξ and ξ′ are two arbitrary quaternions.
Unit quaternions can be used to represent orientation, while

quaternion multiplication defined by (30) can be used to
retrieve the result of a rotation. In the context of orientation
representation, unit quaternions denoted by

ξ (θ) = cos (θ/2) + (nxı+ ny+ nzk) sin (θ/2) (31)

are often used, where n = (nx, ny, nz)
T with ‖n‖2 = 1

is a fixed axis and θ is the angle between the two given
orientations. In the following (31) is used as unit quaternion.

Let baseξstart and baseξgoal denote the unit quaternion express-
ing the orientation of the two frames w.r.t. the base frame. The
superscript denotes the frame in which a unit quaternion (31)

is expressed, while the subscript denotes the frame to which
it refers. The result of the quaternion product

baseξd (θ) =
baseξstart

startξd(θ) (32)

describes an interpolation between start orientation baseξstart
and the goal orientation baseξgoal. The transition between them
is described by the quaternion startξd(θ). The quaternion startξd
complies with startξd(θ = 0) = 1 and startξd(θ = θL) =

startξgoal.
The product startξbase

baseξgoal defined by (30) yields the axis n
and the goal angle θL in (31), where startξbase is the inverse to
baseξstart, i.e.

(
baseξstart

)−1
=
(

baseξstart
)∗

= startξbase.
Applying the proposed motion law (7) to the geometric path

defined by (32) and (31) leads to
baseξd (θ(t)) =

baseξstart
startξd (s (t)) (33)

a C4 continuous p2p trajectory in SO(3) with L = θL, vmax =
ωmax, amax = αmax, and dmax = δmax, where ωmax, αmax

and δmax are the orientation kinematic limits.
Orientation kinematic limits can easily be taken into account

because the rotation axis n is fixed [14]. The angular velocity
ω = (ωx, ωy, ωz)

T , angular acceleration α = (αx, αy, αz)
T ,

and angular deceleration δ = (δx, δy, δz)
T are decoupled and

linear w.r.t. the base frame:

ωx = nxθ̇(t) , ωy = ny θ̇(t) , ωz = nz θ̇(t) , (34)

αx = nxθ̈(t) , αy = ny θ̈(t) , αz = nz θ̈(t) , (35)

−δx = nxθ̈(t) , −δy = ny θ̈(t) , −δz = nz θ̈(t) . (36)

Note that δx, δy, δz > 0 and, therefore, the minus signs in
(36). As mentioned in Sec. I, none of the twelve sets of Euler
angle are able to take into account the orientation kinematic
limits efficiently due to its non-algebraic form [16].

C. Synchronization

Synchronization leads to the important requirement of a
straight line in the respective domain that all n DOF have
to reach their target pose simultaneously at zero velocity, zero
acceleration, and so forth. This is achieved with common time
evolution. Therefore, the constraints for all n DOF are adapted
for synchronization. We utilize (25)-(27) which can be used
to synchronize n DOF by rewriting them as

vmax,i =
|Li|

(Tcr,max + 0.5Tlo,max + 0.5Tsd,max)
, (37)

amax,i = vmax,i
Ca,4

Tlo
, and (38)

dmax,i = vmax,i
Ca,4

Tsd
, (39)

GRASSMANN et al.: QUATERNION-BASED SMOOTH TRAJECTORY GENERATOR FOR VIA POSES IN SE(3) CONSIDERING KINEMATIC LIMITS IN CARTESIAN SPACE5

where Tcr,max = maxi (0, Tcr,i), Tlo,max = maxi Tlo,i, and
Tsd,max = maxi Tsd,i. Note that Ti = Tlo,i + Tcr,i + Tsd,i
The subscription i = 1, . . . , n displays the respective DOF,
e.g. Cartesian space, and the max suffix denotes the maximum
duration of the respective segment considering all n DOF.

D. Blending

The geometric path can be constructed directly or indirectly.
The idea is to construct directly the entire geometric path first.
Afterwards the blending part is constructed indirectly, which
concatenates the adjacent trajectories.

For the following we need the properties of vN,4 which is

vN,4(1− τ) = 1− vN,4(τ) . (40)

By rearranging (40), we obtain

vN,4(1− τ) + vN,4(τ) = 1 = const. (41)

Note that vN,4 has all properties of a path primitive which are
summarized in [3].

For three adjacent points, i.e. pk−1, pk, pk+1, with given
kinematic limits, the blending part is defined by vksd and
vk+1
lo , see (6) and (4), respectively. The superscript denotes

the appropriate p2p trajectory and the three adjacent points
were chosen in order to have positive velocities. The velocity
of the blending part with λk = λk+1 = 1 is defined by

v (t) = vksd
(
1− τk

)
+ vk+1

lo

(
τk+1

)
= vkmaxvN,4

(
1− τk

)
+ vk+1

maxvN,4
(
τk+1

)
followed by substituting (40) and τk = τk+1 leading to

v (t) = vkmax

(
1− vN,4

(
τk
))

+ vk+1
maxvN,4

(
τk
)

= vkmax +
(
vk+1
max − vkmax

)
vN,4

(
τk
)
, (42)

which is a smooth velocity profile leading to a C4 trajectory.
However, (42) may lead to high accelerations and, therefore,
potentially violate the kinematic limits. In this case, we
redefine the maximum deceleration dkmax of kth trajectory and
the maximum acceleration ak+1

max of the (k + 1)
th trajectory.

The deceleration and acceleration are rewritten as

dkble =
vkmaxCa,4

Tble
and (43)

ak+1
ble =

vk+1
maxCa,4

Tble
, respectively, (44)

where Tble is the blending duration and it is specified by

Tble = Ca,4 max

{
|v∗|
ak+1
max

,
|v∗|
dkmax

,
vk+1
max

ak+1
max

,
vkmax

dkmax

}
(45)

with v∗ = sign
(
Lk+1

)
vk+1
max − sign

(
Lk
)
vkmax respecting

negative and positive velocities. In order to derive (43)-(45),
we may compute the duration of (42). The computation is
similar to (12) and requires the maximum derivative of (42),
which is equal to the smallest value of dkmax and ak+1

max. The
new duration of (42) is the maximum between the computed
duration, T ksd, and T k+1

lo . The derivation is completed after
simplifying the maximum formulation. Note that after utilizing
(43) and (44) the inequalities dkble ≤ dkmax and ak+1

ble ≤ akmax

holds and, therefore, no kinematic limits will be violated.
Further, note that the subsequent adaptations of duration T ksd
and T k+1

lo are now equal due to (45). Thus, the blending (cf.
(42)) and, therefore, the overall trajectory is C4 smooth.

In Fig 2, example 1-DOF trajectories are depicted. The
blending is smooth and all kinematic limits are met. Note that
the next trajectory starts if the previous one starts with its set-
down segment. The switching time Tenable indicates the start
of the respective trajectory.

Lets now consider two p2p trajectories in SO(3) given
by (33) and the proposed motion law in Sec. II-A. The
concatenation via (30) of both p2p trajectories leads to one
overall trajectory. Each orientation interpolation is described
by its time-variant angle θ(t) = s(t) and its fixed axis
of rotation n. Therefore, during the blending the overall
axis of rotation changes over the interpolation due to the
concatenation of two time-variant quaternions, for instance
baseξk−1

k−1ξk (s (t))
kξk+1 (s (t)), while during the cruise seg-

ment with constant velocity the overall axis of rotation is
constant, for instance baseξk−1

k−1ξk
kξk+1 (s (t)). Note that

baseξk−1 and baseξk−1
k−1ξk are constant and, therefore, the

multiplication by these constants does not affect the angular
velocity and its time derivatives regarding their magnitude.
Furthermore, both p2p trajectories concatenated without blend-
ing lead to two straight lines being the shortest great arc on the
surface of the unit quaternion sphere in the four-dimensional
space between two adjacent orientations. Note the relation
to SLERP [22] which is shown in [10]. During the blending
both straight lines in SO(3) are smoothly blended similar to
the example depicted in Fig 2 but on the surface of the unit
quaternion sphere. An important fact is the decoupled linear
form of the angular velocity (34), angular acceleration (35),
and angular deceleration (36) in order to provide a smooth
blending. The orientation kinematic limits are preserved thanks
to the smooth blending and the eventual redefinition of the
orientation kinematics limits of the respective p2p trajectory
by appropriate adaptation of (42)-(45). A similar blending
approach can be found in [6]. However, an additional interpo-
lation parameter during the blending is mandatory, the overall
trajectory is only C1 continuous, and kinematic limits cannot
be considered.

E. Assembling the SE(3) trajectory planner

Now that the motion law, quaternionic path, the synchro-
nization for several DOF, and the necessary blending approach
have been defined, the components can be assembled into
one framework. For the sake of simplification, the transla-
tional kinematic limits are assigned component-wise and are
equal among Cartesian axes. Further, the rotational kinematic
limits are designed as magnitude constraints, i.e. ωmax =
max {||ω||2}, αmax = max {||α||2}, and δmax = max {||δ||2}
with ||·||2 representing the Euclidean norm.

The framework requires m p2p trajectories with kinematic
limits. We introduce a p2p trajectory state T which include
all necessary information without time law indicating all

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

Fig. 2. Course of position, velocity, and acceleration of si(t) with C4
smoothness, different total displacements, different kinematic limits, and
switching time Tenable defines the overall trajectory for the position x (t).
The blending method guaranties that the kinematic limits amax and dmax

are not violated in the respective segment. As can be seen in the course of
position, x (t) passes the via points in the vicinity, whereas the start and goal
position are exactly reached. Moreover, x (t) has a continuously differentiable
velocity, acceleration, and jerk. The course of jerk is omitted.

boundaries of a trajectory, such as start and goal pose and
kinematic limits. The ith state T i is defined as

T i =
(
xis, x

i
g, y

i
s, y

i
g, z

i
s, z

i
g, ξ

i
s, ξ

i
g,

vix,max, a
i
x,max, d

i
x,max, v

i
y,max, a

i
y,max, d

i
y,max,

viz,max, a
i
z,max, d

i
z,max, ω

i
max, α

i
max, δ

i
max

)
(46)

with T 0 = (0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
where x, y and z are the respective Cartesian axes and ξ
represented an orientation as unit quaternion (31). The suffix s
denotes the start, while suffix g stands for goal. For the sake of
readability, the suffix for the base frame is omitted. Note that
lkg = lk+1

s for l = x, y, z and ξkg = ξk+1
s holds if 0 ≤ k < m.

The following five steps are needed for preparation:
1st compute Lij = lig− lis for l = x, y, z and compute θiL and

ni from the product ξis
(
ξig
)∗

defined by (29)-(30).
2nd adapting the kinematic limits of T i by considering jmax

via (25)-(27). Note that this step is optional.
3rd synchronization of all DOF by (37)-(39).
4th ensure kinematic limits and smoothness during blending

via (43)-(44).
5th synchronization of all DOF by (37)-(39). This step is

necessary if 4th step adapts the kinematic limits.
6th compute switching time T ienable =

∑i−1
k=0 T

k
lo + T kcr with

T 0
lo = T 0

cr = 0 s.
Afterwards, we rewrite the ith p2p trajectory state T i as

T i =
(
Lix, L

i
y, L

i
z, θ

i
L, n

i, T ienable,

vix,max, a
i
x,max, d

i
x,max, v

i
y,max, a

i
y,max, d

i
y,max,

viz,max, a
i
z,max, d

i
z,max, ω

i
max, α

i
max, δ

i
max

)
, (47)

where the kinematic limits may have been adapted according
to the previous preparation steps.

The trajectories of each DOF are concatenated at certain
switching time T ienable to compose the overall trajectory in
SE(3). For the translational part, they are simply the sums

x (t) = x1s +

m∑
i=1

s
(
Lix, v

i
max, a

i
max, d

i
max, t

i
)
, (48)

y (t) = y1s +

m∑
i=1

s
(
Liy, v

i
max, a

i
max, d

i
max, t

i
)

, and (49)

z (t) = z1s +

m∑
i=1

s
(
Liz, v

i
max, a

i
max, d

i
max, t

i
)
, (50)

where ti = t −
∑i
k=0 T

k
enable acts as switching time and (7)

is applied. The velocity profiles of the Cartesian axes are

ẋ (t) =

m∑
i=1

v
(
Lix, v

i
max, a

i
max, d

i
max, t

i
)
, (51)

ẏ (t) =

m∑
i=1

v
(
Liy, v

i
max, a

i
max, d

i
max, t

i
)

, and (52)

ż (t) =

m∑
i=1

v
(
Liz, v

i
max, a

i
max, d

i
max, t

i
)
, (53)

where (3) is used. The rotational part needs to be treated
differently, which leads to the product

ξ (t) = ξ1

m∏
i=1

iξd
(
s
(
θiL,n

i, ωimax, α
i
max, δ

i
max, t

i
))
, (54)

where (30) and (31) are utilized. Note the similarities between
(33) and (54). By making use of the property ||ξξ′||2 =
||ξ||2 ||ξ′||2 = 1 for two given arbitrary unit quaternion ξ and
ξ′, it can be guaranteed that (54) is an unit quaternion in every
time step and its generated rotational path is a path on the
unit hypersphere in SO(3). Therefore, no re-normalization is
needed which may cause distortions.

III. SIMULATION

For the following validation we use a DLR LWR-III [1] in
simulation. The nine dots puzzle is applied in order to show the
realized implementation of the proposed trajectory generator.
The task is to connect all nine given dots which were arranged
in a square with only four straight lines. The accompanying
video provides additional visual aid.

TABLE II
PLANNED POSES FOR THE VALIDATION.

Translation (unit in meters) Rotation (dimensionless quantity)

i x y z η ε1 ε2 ε3

1 0.75 0.0 0.59 0.708 0 0.707 0
2 0.55 0.15 0.4 0.866 0 0.5 0
3 0.55 −0.15 0.7 0.845 0.191 0.462 −0.191
4 0.55 0.3 0.7 0.845 −0.191 0.462 0.191
5 0.55 −0.15 0.25 0.854 0.354 0.354 0.146
6 0.55 −0.15 0.7 0.845 0.191 0.462 −0.191
7 0.75 0.0 0.59 0.708 0 0.707 0

GRASSMANN et al.: QUATERNION-BASED SMOOTH TRAJECTORY GENERATOR FOR VIA POSES IN SE(3) CONSIDERING KINEMATIC LIMITS IN CARTESIAN SPACE7

a) Setup: In the validation, a trajectory is planned be-
tween seven poses specified by poses reported in Table II.
For all poses the applied kinematic limits vmax = 0.25m/s,
amax = dmax = 5.5m/s2, ωmax = 3.14 rad/s, αmax =
δmax = 62.83 rad/s2 are equal. The sampling time is set to
10ms. The robot simulator V-REP [8] is used. All parameters
of the simulated robot are designed to behave realistically
and similarly to its real robot counterpart. However, several
simplifications and assumptions are made, e.g. negligible fric-
tion and un-modeled motor dynamics. The inverse kinematic
module of V-REP allowing kinematic calculation for any type
of mechanism is used and the damped least-squares method
is utilized. The proposed trajectory planner is implemented in
MATLAB R2017b connected with V-REP 3.6.0, running on a
64-bit Linux operating system, on a computer with a Xeon
3.60GHz× 8 processor.

b) Results: The robot moves on a predefined trajectory
in Cartesian space. Figure 3 depicts sequences of the accom-
panying video. The course of the desired trajectory is shown
in Fig. 4, in Fig. 5, and in Fig. 6.

c) Discussion: From the image sequence (cf. Fig. 3) and
video, it can be observed that the robot moves in straight
lines except during blending. Therefore, it emphasizes how
we fulfill a key requirements of path planning algorithms:
maintaining near-linear trajectories in SE(3) between suc-
cessive via poses. Our approach can guarantee geodesic line
movements in SE(3) during the constant velocity segment.
Regarding the translational part, it is a geodesic (straight) line
in Cartesian space because the Cartesian axes are synchro-
nized, cf. Fig. 4. Regarding the rotational part, it is a geodesic
(shortest great arc) line in SO(3) since our planner utilizes
the proposed quaternion interpolator in [10], which inherits
the property of being the shortest great arc between the two
quaternions on the unit quaternion sphere from SLERP [22],
see [10] for reference. Note that the variation in the geometric
path during blending is crucial in order to comply with the
kinematic limits. Further note that the higher the acceleration
and deceleration, the closer the generated trajectory gets to
the given via pose. If the maximum velocity, acceleration, and
deceleration of the generated overall trajectory are not adapted,
it may violate the kinematic limits. Recomputing the duration
of the blending part Tble leads to a longer duration in the
acceleration and deceleration phase. Surprisingly, the overall
duration of the trajectory does not change after adaptation
because the longer the generated path in the blending part is,
the shorter its duration is, and vice versa. Therefore, it can be
concluded that the generated trajectory is optimal in the sense
of minimum duration and distance travelled under kinematic
limits in SE(3) and required C4 smoothness.

Regarding the implicit generation of the geodesic path
during the blending part, the following should be noted. First,
many commonplace approaches in geometry cannot obtain and
preserve C2 smoothness, e.g. path constructed from linear and
circular segments [3] and cubic B-spline quaternion curves
constructed with the de Casteljau algorithm [13], respectively.
Second, with minimizing the acceleration it is possible to
reduce energy consumption significantly [20].

To the best of our knowledge, this is the first trajectory gen-

erator, which can a priori consider kinematic limits on SE(3).
In comparison to recent published works on quaternion-based
orientation interpolation in [18] and in [21], no numerical
optimization and no re-normalization is required. Utilizing
numerical optimization is usually a bottleneck when hard real-
time capabilities is needed. Numerical optimization and re-
normalization may incurs distortions leading to unpredictable
motion in SO(3). Furthermore, our quaternion-based orienta-
tion interpolator generates a trapezoidal-like velocity profile
which should result in a significantly shorter duration while
respecting angular kinematic limits throughout the motion.

IV. CONCLUSIONS

In this paper, we present a solution for trajectory planning
in SE(3) including singularity-free orientation interpolation.
The proposed trajectory planner can handle multiple via poses
and kinematic limits. It is expandable to multiple DOF and
different smoothness requirement, making it suitable for a
broad range of applications such as computer animation,
holonomic mobile robots, spacecrafts, and robot manipulators.
The effectiveness is shown for a 7-DOF robot manipulator in
simulation.

The key idea is to blend the overlapping segment of two
trapezoidal-like velocity profiles, i.e. the deceleration segment
of the previous one and the acceleration segment of the
following one. This implicitly generates a geometric path
which considers the kinematic limits and satisfies the required
smoothness for the overall trajectory in SE(3). The segment
with constant velocity explicitly generates a geodesic path in
SE(3) due to the synchronized Cartesian axes and quaternion-
based orientation interpolation.

The merit of our approach lies in the fact that all necessary
values can be computed in advance, all kinematic limits are
considered, and all degrees of freedom in Cartesian space are
taken into account without requiring a numerical optimization.
Hence, it is suitable for hard real-time application. Due to
the fact that the velocity of the end-effector can be computed
in advance, which can be interpreted as kinetic energies
on velocity level, the velocity can be directly constrained.
Due to the capability of computing the desired acceleration
in advance, our approach is suitable for acceleration-based
control and inverse dynamics problems.

For future improvements, the abolition of the null-boundary
condition can extend our approach to an online trajectory gen-
erator with instantaneously reaction capabilities to unforeseen
events. Further, we will conduct real robot-experiments with
applications in human-robot-collaboration.

ACKNOWLEDGMENT

We thank Sami Haddadin for discussion and sharing his
knowledge on related topics that have greatly inspired the
course of this research.

REFERENCES

[1] A. Albu-Schäffer, S. Haddadin, C. Ott, A. Stemmer, T. Wimböck, and
G. Hirzinger. The DLR lightweight robot: design and control concepts
for robots in human environments. Industrial Robot: an international
journal, 2007.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2019

Fig. 3. Image sequence of accompanying video. The desired pose generated by the proposed trajectory planner is shown by a red trace, while the executed
trajectories executed by the robot are shown by a green trace.

Fig. 4. Course of the desired position, velocity, and acceleration.

Fig. 5. Desired quaternions generated by the proposed trajectory planner.

Fig. 6. Course of the angular velocity ω and acceleration ω̇ which are
computed numerically.

[2] A. H. Barr, B. Currin, S. Gabriel, and J. F. Hughes. Smooth interpolation
of orientations with angular velocity constraints using quaternions. In
ACM SIGGRAPH Computer Graphics, volume 26, pages 313–320,
1992.

[3] L. Biagiotti and C. Melchiorri. Trajectory planning for automatic
machines and robots. Springer Science & Business Media, 2008.

[4] J. J. Craig. Introduction to robotics: mechanics and control, volume 3.
Pearson Prentice Hall Upper Saddle River, 2005.

[5] E. B. Dam, M. Koch, and M. Lillholm. Quaternions, interpolation and
animation, volume 2. Datalogisk Institut, Københavns Universitet, 1998.

[6] N. Dantam and M. Stilman. Spherical parabolic blends for robot
workspace trajectories. In 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3624–3629, 2014.

[7] A. De Luca and W. Book. Robots with flexible elements. In Springer
Handbook of Robotics, pages 287–319. Springer, 2008.

[8] M. Freese, S. Singh, F. Ozaki, and N. Matsuhira. Virtual robot
experimentation platform v-rep: A versatile 3d robot simulator. In
International Conference on Simulation, Modeling, and Programming
for Autonomous Robots, pages 51–62, 2010.

[9] F. S. Grassia. Practical parameterization of rotations using the exponen-
tial map. Journal of graphics tools, 3(3):29–48, 1998.

[10] R. Grassmann, L. Johannsmeier, and S. Haddadin. Smooth point-to-
point trajectory planning in se(3) with self-collision and joint constraints
avoidance. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 8352 – 8359, 2018.

[11] S. Haddadin, S. Haddadin, and S. Parusel. Franka emika panda.
Accessed: Feb. 12, 2019. [Online]. Available: www.franka.de.

[12] I. L. Kantor and A. S. Solodovnikov. Hyperkomplexe Zahlen. Teubner,
1978.

[13] M.-J. Kim, M.-S. Kim, and S. Y. Shin. A c/sup 2/-continuous b-spline
quaternion curve interpolating a given sequence of solid orientations. In
Computer Animation’95., Proceedings., pages 72–81, 1995.

[14] M.-X. Kong, C. Ji, Z.-S. Chen, and R.-f. Li. Application of orientation
interpolation of robot using unit quaternion. In IEEE International
Conference on Information and Automation, pages 384–389, 2013.

[15] T. Kröger and F. M. Wahl. Online trajectory generation: Basic concepts
for instantaneous reactions to unforeseen events. IEEE Transactions on
Robotics, 26(1):94–111, 2010.

[16] J.-C. Latombe. Robot motion planning, volume 124. Springer Science
& Business Media, 1991.

[17] S.-g. Liu, S. Zhu, X. Wang, and H.-f. WANG. Smooth orientation
planner for manipulators based on quaternion and b-spline. Journal
of Zhejiang University (Engineering Science), 43(7):1192–1196, 2009.

[18] M. Neubauer and A. Müller. Smooth orientation path planning with
quaternions using b-splines. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 2087–2092, 2015.

[19] T. Popiel and L. Noakes. C2 spherical bézier splines. Computer aided
geometric design, 23(3):261–275, 2006.

[20] S. Riazi, K. Bengtsson, O. Wigstrom, E. Vidarsson, and B. Lennartson.
Energy optimization of multi-robot systems. In IEEE International
Conference on Automation Science and Engineering, pages 1345–1350,
2015.

[21] M. Shahbazi, N. Kashiri, D. Caldwell, and N. Tsagarakis. On the
orientation planning with constrained angular velocity and acceleration
at endpoints. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 7033–7038, 2018.

[22] K. Shoemake. Animating rotation with quaternion curves. In ACM
SIGGRAPH computer graphics, volume 19, pages 245–254, 1985.

[23] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: mod-
elling, planning and control. Springer Science & Business Media, 2010.

[24] J. Stuelpnagel. On the parametrization of the three-dimensional rota-
tion group. Society for Industrial and Applied Mathematics Review,
6(4):422–430, 1964.

[25] M. Žefran, V. Kumar, and C. B. Croke. On the generation of smooth
three-dimensional rigid body motions. Transactions on Robotics and
Automation, 14(4):579–589, 1998.

[26] R. Weitschat, A. Dietrich, and J. Vogel. Online motion generation for
mirroring human arm motion. In IEEE International Conference on
Robotics and Automation, pages 4245–4250, 2016.

