Higher accuracy and fast convergence in

learning the kinematics thanks to effective
representations. Advantageous

representations are mandatory even for low
dimensional machine learning application!

® APPLIED SCALING FOR THE JOINT SPACE REPRESENTATION.
n e e r ]. S O Legend' Description of the scaling

— q; (I) No scaling is applied to the joints of the Stanford Arm.

° ° ° ° ° — q; (IT) Each joint is scaled via the maximum value, cf. Table L.
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p p means of trigonometric functions similar to (17).

vi (V) Rotary joints are transformed by means of trigonomet-

ric functions, whereas the prismatic joint is scaled by

o o o o 0.75 m.
Learning the Forward Kinematics in SE(3 oD No wnio s ppd o o i o b CTCR
g — ay, B; (IT) Each joint of the CTCR is scaled by the absolute value,
.. & max and 3; min. cf. Table II.
a;, Bi (III)  «; is scaled by «; max Whereas [3; is transformed into an
unit cube utilizing the inverse of (22).
vi (IV) The cylindrical form ~; is applied, see (17).
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vi (V) Rotary joints of the CTCR are transformed by means
of trigonometric function similar to (17) while 3; is
transformed by the inverse of (22).

0; (VI) The polar form 9; is used, which is given by (19).
INotation in the legend used in Fig. 6, Fig. 7, and Fig. 8.
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Fig. 4. CTCR prototype has three carriers each consisting a tube and a motor
for rotation. Motors for translation are attached at the back cover. Six equal
motors (DCX 16 L, Maxon Motor AG, OW, Switzerland) are controlled with
a motion control board (DCM4163, Galil Motion Control, CA, USA).
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