Higher accuracy and fast convergence in learning the kinematics thanks to effective representations. Advantageous representations are mandatory even for low dimensional machine learning application!

On the Merits of

Joint Space and Orientation Representations in Learning the Forward Kinematics in SE(3)

Reinhard M. Grassmann and Jessica Burgner-Kahrs

Motivation

- Regression is more sensitive w.r.t. input than classification
- Learning methods and architecture are investigated so far

Legend ¹	Description of the scaling				
$-q_i$ (I)	No scaling is applied to the joints of the Stanford Arm.				
$- q_i$ (II)	Each joint is scaled via the maximum value, cf. Table I				
$- \gamma_i (\mathrm{IV})$	Rotary joints of the Stanford Arm are transformed by means of trigonometric functions similar to (17).				
γ_i (V)	Rotary joints are transformed by means of trigonometric functions, whereas the prismatic joint is scaled by 0.75 m .				
$- \alpha_i, \beta_i (\mathbf{I})$	No scaling is applied to the joints of the CTCR.				
$- \alpha_i, \beta_i (\mathrm{II})$	Each joint of the CTCR is scaled by the absolute value i.e. $\alpha_{i,\max}$ and $\beta_{i,\min}$, cf. Table II.				
$- \alpha_i, \beta_i (\text{III})$	α_i is scaled by $\alpha_{i,\max}$ whereas β_i is transformed into ar unit cube utilizing the inverse of (22).				
γ_i (IV)	The cylindrical form γ_i is applied, see (17).				
$-\gamma_i$ (V)	Rotary joints of the CTCR are transformed by means of trigonometric function similar to (17) while β_i is transformed by the inverse of (22)				
$-\delta_i$ (VI)	The polar form δ_i is used, which is given by (19).				
¹ Notation in th	ne legend used in Fig. 6, Fig. 7, and Fig. 8.				
	TABLE V				

Archi	Architecture with ReLU			ng with A	Weights & bias ³	
$N_{ m ip}$	$N_{ m h}$	N_{op}	$N_{ m bs}$	$N_{ m ep}$	λ	C
6	100	6	128	500	3×10^{-5}	1306
6	93	7	128	500	1×10^{-5}	1309
9	81	6	128	500	3×10^{-5}	1302
9	77	7	128	500	1×10^{-5}	1316
11	69	7	199	500	1×10^{-5}	1200

• What are the right representations? • Are common representations applicable?

Approach

- Shallow artificial neural network
- Empirical study with different robot types
- 6 different joint space representations
- 15 different orientation representations
- Normalization w.r.t. number of neurons
- Affine transformation for disentanglement

Results

- Better with quaternions
- Better with affine transformation

Conclusion

- Use quaternion/vector-pair
- Transform your inputs and outpus
- Mandatory even for low dimensional problems

UNIVERSITY OF TORONTO

 α_3

Continuum Robotics Laboratory