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Abstract— We present a framework based on Clarke coordi-
nates for spatial displacement-actuated continuum robots with
an arbitrary number of joints. This framework consists of
three modular components, i.e., a planner, trajectory generator,
and controller defined on the manifold. All components are
computationally efficient, compact, and branchless, and an
encoder can be used to interface existing framework compo-
nents that are not based on Clarke coordinates. We derive the
relationship between the kinematic constraints in the joint space
and on the manifold to generate smooth trajectories on the
manifold. Furthermore, we establish the connection between the
displacement constraint and parallel curves. To demonstrate its
effectiveness, a demonstration in simulation for a displacement-
actuated continuum robot with four segments is presented.

I. INTRODUCTION

Soft and continuum robots must necessarily move from
a current configuration to a desired configuration to accom-
plish meaningful real-world tasks in medical and industrial
applications. Thus, a minimal framework should consist
of three parts; planner, trajectory generator, and controller.
However, developed frameworks are tailored to a specific
robot morphology rendering some, if not all, components
of the framework unsuitable for other robot morphologies.
This limits the reusability and rapid advancement in the
field. Overcoming that by providing a modular framework,
where each component has the same interface, has obvious
benefits, e.g., (i) interpretability and safety due to a divide-
and-conquer approach, (ii) compatibility due to the same
interface, (iii) flexibility in changing and testing components,
(vi) agility in developing, improving, and testing of separate
components, and (v) empowering the field by sharing and
reusing components. Overall, an increase in cost-efficiency
and a decrease in the number of times the wheel needs to be
reinvented can be expected. Therefore, providing a general
principle to create frameworks is a necessary step to move
forward together, rather than just improving one particular
robot morphology.

As a candidate for an interface between the components,
different improved state representations [1], [2], [3], [4], [5]
have been introduced in recent years. It has been shown that
using improved state representations has decisive advantages.
Della Santina et al. [1] discuss and analyze the main issues
arising from the use of commonly used parameterization,
i.e., curvature κ and bending plane angle θ used for constant

We acknowledge the support of the Natural Sciences and Engineering
Research Council of Canada (NSERC), [RGPIN-2019-04846].

All authors are with Continuum Robotics Laboratory,
Department of Mathematical and Computational Sciences,
University of Toronto, Mississauga, ON L5L 1C6, Canada
reinhard.grassmann@utoronto.ca

curvature models. The derived improved state representation
[1] for n = 4 number of joints shows superb perfor-
mance on a model-based control application. Allen et al.
[2] introduces improved state representations for n = 3
and n = 4 number of joints. They propose closed-form
and singularity-free forward kinematics as well as Jacobian-
based inverse kinematics mitigating the disadvantages of
previous approaches. Dian et al. [4] proposed an improved
state representation that can be seen as an adaptation of
improved state representation by Della Santina et al. [1]
to n = 3. As mentioned by Dupont et al. [6], different
representations exist and among them, that utilize Cartesian
curvature components, i.e., κx and κy , have the advantage
of avoiding a parametric singularity. The connection between
the Cartesian curvature components and all improved state
representations is established by Grassmann et al. [5].

Grassmann et al. [5] links the displacement-actuated joints
and the displacement constraint to electrical currents and
Kirchhoff’s current law, respectively. This and the refor-
mulation of the joint representation lead to the use of the
Clarke transformation matrix that allows the disentanglement
of the displacement constraint. As a result, an improved state
representation called Clarke coordinates is derived unifying
previous improved state representations [1], [2], [3], [4], [5]
and generalizing them to n ≥ 3. Since constant curvature [7]
is not enforced during their derivation, the Clarke coordinates
are not limited to constant curvature assumption. Grassmann
& Burgner-Kahrs [8] show that the analogy to the Clarke
transformation matrix is not necessary to derive the so-called
Clarke transform. This allows for consideration of arbitrary
joint location distribution on the constant cross-section of a
displacement-actuated continuum robot.

In general, the derived approaches based on improved state
representations are closed-from, compact, computationally
efficient, and singularity-free. This makes the Clarke coor-
dinates a desirable representation and unified language to
interface all components within a framework. Due to the
recent introduction of the Clarke transform, only sampling
methods [5], [8] and controllers [5], [8] have been proposed.
While previous sampling methods and controllers can be
used as components in a framework, a trajectory generator
has yet to be formulated using Clarke coordinates.

This work considers a displacement-actuated continuum
robot defined by kinematic design parameters consisting of
segment length l = const., distance di, angle ψi, and number
of joints n. We kindly refer to [5], [8] for a depiction. For



n equally distributed joints, the polar coordinate given by

ψi =
2π

n
(i− 1) and di = d = const. (1)

describes the location of the ith joint in the cross-section. The
kinematic design parameters fully describe the displacement-
actuated continuum robot in the kinematic sense encompass-
ing a large class of soft robots and continuum robots.

In the presented work, we aim to shift the paradigm to-
wards a unified approach by introducing a framework, where
each of the components is based on the Clarke coordinates
of a 2 dof manifold. In particular, the following contributions
are made:

• Presentation of a framework completely based on the
Clarke coordinates

• Introduction of a smooth trajectory generator that spec-
ifies and generates trajectories on the 2 dof manifold

• Derivation of the kinematics constraints for trajectories
on the manifold

• Connection between displacement constraint and paral-
lel curves also known as offset curves

II. CLARKE TRANSFORM

In this section, we provide a self-contained and brief
description of the Clarke transform, the relationship to arc
parameters, and virtual displacement. The description of
virtual displacement is expanded to the connection between
the displacement constraint and parallel curves. Furthermore,
we briefly state the encoder-decoder architecture. For a
longer discussion, we kindly refer to [5], [8], [9].

A. Clarke Transform for Displacement-Actuated Joint

Proposed by Grassmann at al. [5], a vector with values of
each displacement-actuated joint ρi can be represented as

ρ =


ρ1
ρ2
...
ρn

 =


ρRe cos (ψ1) + ρIm sin (ψ1)
ρRe cos (ψ2) + ρIm sin (ψ2)

...
ρRe cos (ψn) + ρIm sin (ψn)

 ∈ Q, (2)

where Q ⊂ Rn is the joint space. All joint values in (2)
are interdependent and constrained obeying the displacement
constraint given by

n∑
i=1

ρi = 0. (3)

The Clarke coordinates [5], i.e., ρRe and ρIm in (2), can be
combined into a vector as well, i.e.,

ρ =

[
ρRe

ρIm

]
. (4)

Both representations can be transformed into each other via

ρ = MPρ and (5)

ρ = M−1
P ρ, (6)

where the generalized Clarke transformation matrix MP is

MP =
2

n

[
cos (ψ0) cos (ψ1) · · · cos (ψn)
sin (ψ0) sin (ψ1) · · · sin (ψn)

]
, (7)

Fig. 1. Surrogate displacement-actuated continuum robot.

which holds for symmetrically arranged joints [5], [8]. By
factor out (4) in (2), its inverse M−1

P can be found being

M−1
P =


cos (ψ1) sin (ψ1)
cos (ψ2) sin (ψ2)

...
...

cos (ψn) sin (ψn)

 , (8)

where (8) is the right-inverse of non-square matrix (7).

B. Arc Parameters

Utilizing the constant curvature assumption [7], it is pos-
sible to identify the arc parameters, i.e., curvature κ and
bending-plane angle θ. Derived by Grassmann et al. [5], this
relation between Clarke coordinates and arc parameters is

ρ =

[
ρRe

ρIm

]
=

[
dlκ cos (θ)
dlκ sin (θ)

]
. (9)

Note that l is constant and not considered as arc parameters
in this context. As hinted by the used analogy and naming
convention by Grassmann et al. [5], we can tread (9) as
a complex number embedded in R2. The modulus and
argument of (9) is given by

|ρ| = dlκ and (10)
argρ = θ. (11)

As can be seen, (10) is the scaled curvature κ or the scaled
bending angle ϕ = lκ, whereas (11) is bending-plane angle
θ. Other arguments and formulæ are presented in [5], [10].
To further investigate the geometric meaning of |ρ|, we take
a look at the concept of virtual displacement [9], [5] and the
displacement constraint (3).

C. Virtual Displacement and Displacement Constraint

We consider a displacement-actuated continuum robot
with differential actuation and an additional rotational base,
see Fig. 1. Due to the rotation θ, the joint representation
(2) does not apply to this toy example. Instead, we denote
the value of each displacement-actuated joint as ρ̂1 and ρ̂2,
respectively.

As mentioned by Grassmann et al., the maximum and
minimum values are aligned with the bending plane, as-
suming infinite large n, i.e., infinite many joints around the
center-line. In our case, ρ̂1 is associated with the maximum
value, whereas ρ̂2 is associated with the minimum value.



Fig. 2. Arc length of the surrogate displacement-actuated continuum robot.
For convenience, the absolute values of ρ̂1 and ρ̂2 are used. The bending
angle ϕ is identical to the tip orientation. Note that the bending plane angle
θ is other tip orientation. Both angles are well-known and reflected in the
rotation matrix of the kinematics for the constant curvature model.

Due to (3), ρ̂2 = −ρ̂1. Furthermore, assuming that ρ̂1 and
ρ̂2 relates to the Clarke coordinates, we can immediately
conclude ρ̂1 = |ρ| and ρ̂2 = −|ρ|. This observation aligns
with the concept of virtual displacements [9], [5].

We gain more insight by looking into the planar repre-
sentation utilizing the bending plane illustrated in Fig. 2, cf.
Fig. 1. Assuming constant curvature, we can relate each arc
length to each other, e.g., l− ρ̂1 = (1/κ− d)ϕ. Solving for
ρ̂1 results in ρ̂1 = |ρ|, where ϕ = lκ is used. Furthermore,
we can identify that bending plane angle ϕ relates to the
tip orientation, which is a known observation [11]. Note that
constant curvature implicit assumes that the line associated
with ρ̂1 and ρ̂2, respectively, is a fully constrained path,
where, loosely speaking, the distance d to the backbone is
constant. In fact, each line is a parallel curve, also known as
an offset curve. A parallel curve depends only on the local
curvature and its distance to the curve [12]. In Fig. 2, two
parallel curves with distance d are depicted.

Using the formula for the arc length of a parallel curve
stated by Loria [13], a property can be derived stating that the
arc length of the curve is equal to the mean of the arc lengths
of both parallel curves. In our case, using the quantities in
Fig. 2 with sign convention depicted in Fig. 1 leads to

l = ((l − ρ̂1) + (l − ρ̂2)) /2 = l − (ρ̂1 + ρ̂2) /2.

Further algebraic manipulation results in ρ̂1 + ρ̂2 = 0 which
is precisely the displacement constraint (3) for n = 2.
The derivation using parallel curves shows that (3) is not a
consequence of the constant curvature assumption. Figure 3
provides additional examples for visual aid. Moreover, since
the displacement |ρ| depends on the angle ϕ (obtained by
integrating the local curvature along the curve) and the
distance d, cf., [13] and [11], we can write

|ρ| = dϕ (12)

instead of (10), where ϕ is the tip orientation and applicable
beyond commonly used constant curvature assumption.

Moreover, the modulus of ρ can be defined independently
of the constant curvature assumption [7] and d. We can find

|ρ| =
√
2/n

√
ρ⊤ρ (13)

by equating the dot products of (4) and (6). Furthermore, the
property M⊤

P = (2/n)M−1
P is used, which can be derived

by inspection of (7) and (8), cf. [10].

Fig. 3. Parallel curves. Dashed lines are parallel curves and the solid lines
between them are the center-line. The displacement depends on the angle ϕ
and the distance d. (left) 2dof case of Cavalieri’s principle, where the tip
and base orientations are identical, resulting in ρ̂i = 0. (middle) parallel
curves resulting in ρ̂i = ±dϕ. (right) full circle, where the tip and base
poses are identical, resulting in ρ̂i = ±2πd.

Fig. 4. Encoder-decoder architecture. Joint values of one robot type
(robot A) can be transformed into joint values of a different robot type
(robot B). The latent space representation is encoded as Clarke coordinates.
Note that the compression is lossless allowing joint values to be uniquely
reconstructed from the Clarke coordinates. (Image credit: Grassmann &
Burgner-Kahrs [8])

D. Encoder-Decoder Architecture

The encoder-decoder architecture [8] utilizes the fact that
the Clarke coordinates ρ can be seen as latent space repre-
sentation. In short, we can use (5) to map ρ(robot A) of robot
A to the same ρ that are obtained using (6) from ρ(robot B)
of robot B. This leads to

ρ(robot B) = M−1
P (robot B)︸ ︷︷ ︸
decoder

MP (robot A)︸ ︷︷ ︸
encoder

ρ(robot A), (14)

which is called encoder-decoder architecture [8]. Figure 4
visualizes this approach. A more general approach is pre-
sented in [8] as well.

III. FEASIBLE JOINT VALUES

We directly sample Clarke coordinates ρU using a
rejection-free sampling method [5]. Considering the argu-
ment (11) and modulus (12) of |ρ|, we only need to sample

|ρU | = ϕmaxdU [0; 1] and argρU = θmax U [−1; 1) ,

where ϕmax and θmax define the maximum value for the tip
orientations, see Fig. 1 and Fig. 2. Each value is drawn
from a uniform distribution U . To match the application at
hand, other distributions and ranges might be considered.
Furthermore, if more samples are required, this sampling
method can be vectorized.

Setting ϕmax is more convenient than defining a maximum
curvature κmax. The convenience lies in relation to the tip
orientation, recap Fig. 2, and the visualization using circles,
where an angle describes a circle more intuitively than
the corresponding curvature. Recap the relation to virtual
displacement in Sec. II-C and Fig. 3, it also circumvents the
relation to constant curvature, i.e., ϕmax = lκmax.



IV. TRAJECTORY GENERATION

In this paper, we focus on simple polynomial trajectories to
lay out the basics of trajectory generation using Clarke coor-
dinates. First, we establish a simple point-to-point trajectory
for the displacement. Afterward, a point-to-point trajectory
generator is proposed for Clarke coordinates. Finally, the
connection between both trajectory generators is pointed out.

A. Trajectory Generation in Joint Space

Consider a C3 smooth path primitive s(τ) ∈ [0, 1] and its
derivative w.r.t. the time primitive τ ∈ [0, 1] given by

s(τ) =− 20τ7 + 70τ6 − 84τ5 + 35τ4,

s′(τ) =− 140τ6 + 420τ5 − 420τ4 + 140τ3 , and

s′′(τ) =− 840τ5 + 2100τ4 − 1680τ3 + 420τ2,

respectively [14]. The duration T of the trajectory is included
in the definition of the time primitive τ = t/T . Using the
boundaries s(1) = 1 and s(0) = s′(0) = s′(1) = s′′(0) =
s′′(0) = 0, the path primitive and its above derivative can be
clipped to define trajectories for all t. For a given ρstart ∈ Q
and ρgoal ∈ Q, we can now define a simple trajectory as

ρd(t) = ρstart +
(
ρgoal − ρstart

)
s(t) . (15)

It is important to show that, at every time step, a valid
displacement is generated. For this, checking (3) results in

n∑
i=1

ρi,d(t) =

n∑
i=1

(ρi,start + (ρi,goal − ρi,start) s(t))

=

n∑
i=1

ρi,start + s(t)

n∑
i=1

ρi,goal − s(t)
n∑

i=1

ρi,start

= 0,

because ρstart ∈ Q and ρgoal ∈ Q obey (3). This simple
check shows that ρd(t) ∈ Q for all t.

For convenience, we define the maximal absolute value of
all entries in ρgoal − ρstart as

∆ρ = ∥ρgoal − ρstart∥∞, (16)

which is a common choice for trajectory generation of
positions in Task space. The quantity ∆ρ is important to
synchronize all n trajectories of (15).

To consider the kinematic constraints given by vmax for
the maximal velocity and amax for the maximal acceleration,
each time at the maximal value of s′(t) and s′′(t) is deter-
mined. By choosing a large enough duration T , the kinematic
constraints can be considered. Therefore, the duration T is

T = max

{
35∆ρ

16vmax
,

√
84∆ρ

5
√
5amax

, Tuser

}
, (17)

where Tuser is defined by a user. For Tuser = 0, the exe-
cuted trajectory (15) always reaches one of the kinematic
constraints. Furthermore, due to the consideration of (16) in
(17), all trajectories in (15) are synchronized, recall τ = t/T .

B. Trajectory Generation using Clarke Coordinates

Until now, all trajectories generated with geometric scal-
ing using path primitives s(t) have shown to be feasible.
Mapping the trajectory (15) onto the manifold leads to

ρd(t) = MPρd(t)

= MP
(
ρstart +

(
ρgoal − ρstart

)
s(t)

)
= MPρstart + s(t)MPρgoal − s(t)MPρstart

= ρstart + s(t)ρgoal − s(t)ρstart,

where the last step results in the formulation

ρd(t) =ρstart +
(
ρgoal − ρstart

)
s(t) (18)

for a trajectory defined on the manifold. Note that (15) is a
straight line in the joint space Q and (18) is also a straight
line on the manifold. The derivation of (18) shows that it is
consistent with a trajectory (15) defined in Q.

To consider the kinematic constraints defined on the
manifold, we can adapt the time T by substituting

∆ρ←− ∆ρ̄,

vmaxρ←− v̄max , and
amax ←− āmax

into (17), where the displacement ∆ρ̄ is defined by

∆ρ̄ = ∥ρgoal − ρstart∥∞. (19)

While the definition of the kinematic constraints defined in
the joint space Q are meaningful due to the physical relation
to the displacement-actuated continuum robot, the equivalent
kinematic constraints used for (18), i.e., v̄max and āmax are
obscure. Therefore, there is a need to establish the relation
between those two sets of kinematic constraints.

C. Relation between the Trajectory Generators

The physical meaning of the kinematic constraints defined
in Q depends on the used displacement-actuated continuum
robot. For example, a tendon-driven continuum robot uses
tendons that actuated with a winch or a threaded drum at-
tached to a motor. Another exemplary displacement-actuated
continuum robot is one with multiple secondary backbones
actuated with linear actuators. In those cases, the physical
meaning of vmax and amax are straightforward. For a soft
robot actuated with bellows, the relationship to vmax and amax
is slightly more complicated.

To relate both sets of kinematic constraints, we find the
extrema of time derivatives of (15) and (18), respectively.
Since the trajectory is synchronized, it is sufficient to look
at the ith entry of (15) and the real part of (18). We can find

max
d

dt
ρi,d(t) =

∆ρ

T

35

16
= vmax and

max
d2

d2t
ρi,d(t) =

∆ρ

T 2

84

5
√
5
= amax



for (15), whereas the extrema for (18) are

max
d

dt
ρRe,d(t) =

∆ρ̄

T

35

16
= v̄max and

max
d2

d2t
ρRe,d(t) =

∆ρ̄

T 2

84

5
√
5
= āmax.

Afterward, T is equated and the resulting ratios are rear-
ranged. The relation between the kinematic constraint is

v̄max = vmax
∆ρ̄

∆ρ
and āmax = amax

∆ρ̄

∆ρ
,

respectively. However, the above relations rely on the eval-
uation of (16) and (19). To overcome this, we can exploit

∥x∥∞ ≤ ∥x∥2 ≤
√
n∥x∥∞

for any vector x. Now, we can utilize (13) and derive lower
and upper bounds. The lower bounds are given by

v̄max ≥
√

2

n

∥ρ̄goal − ρ̄start∥∞
∥ρ̄goal − ρ̄start∥2

vmax ≥
√
2

n
vmax and

āmax ≥
√

2

n

∥ρ̄goal − ρ̄start∥∞
∥ρ̄goal − ρ̄start∥2

amax ≥
√
2

n
amax.

Since lower values for v̄max and āmax will satisfy the kine-
matic constraints in joint space, we set

v̄max ←
√

2

n

∥ρ̄goal − ρ̄start∥∞
∥ρ̄goal − ρ̄start∥2

vmax and (20)

āmax ←
√

2

n

∥ρ̄goal − ρ̄start∥∞
∥ρ̄goal − ρ̄start∥2

amax, (21)

allowing to define the kinematic constraints for (18).

V. CONTROL

The Clarke transform enables the synthesis of linear con-
trollers that utilize the 2 dof manifold. A potential controller
scheme could be a linear controller with two degrees of
freedom. Grassmann et al. proposed two independent pro-
portional feedback controllers with pre-compensation based
on work by Morin & Samon [15]. In Grassmann & Burgner-
Kahrs [8], two independent PD controllers are utilized, where
the controller gains are defined as KP = kPI2×2 and
KD = kDI2×2. Non-diagonal KP ∈ R2×2 and KD ∈ R2×2

are also possible.
Figure 5 illustrates a general controller scheme using parts

of the encoder-decoder architecture (14). In this general
framework, controllers beyond the PID controller can be
used including non-linear controller schemes. In a framework
solely based on Clarke coordinates, the encoder on the left
side depicted in Fig. 5 can be omitted, where the desired
Clarke coordinates are provided by a trajectory generator.
However, it can be used as an interface for external frame-
works outputting ρ and its time derivatives.

Fig. 5. Controller scheme utilizing Clarke transform. For the sake of
compactness, we omit potential derivative terms such as velocity.

TABLE I
PARAMETERS OF THE FRAMEWORK.

Variable Value Unit Description

ϕmax 2π/3 rad Related to the maximum curvature
ϕmax = lκmax

θmax π rad Symmetric maximum bending plane
angle

vmax 0.01 m/s Maximum velocity of ρi(t)

amax 0.01 m/s2 Maximum acceleration of ρi(t)

v̄max – m/s Maximum velocity of ρ̄ is predefined
by vmax and (20)

āmax – m/s2 Maximum acceleration of ρ̄ is prede-
fined by amax and (21)

kp 10 – Controller gain of proportional term

n 5 – Number of joints

l 0.07 m Segment length

ψ 2π/n rad Angular distance between adjacent
joint location

d 0.01 m Distant between center-line and joint
location

VI. FRAMEWORK AND DEMONSTRATION IN SIMULATION

Now that the planner, trajectory generator, and controller
have been defined by using Clarke coordinates, the frame-
work can be assembled. Figure 6 illustrates the framework
with additional encoders enabling the possibility to reuse
components from existing frameworks.

The framework is parameterized by the boundaries of
the sampler used as planner, the kinematic constraints of
the trajectory generator, the controller gain of the controller
scheme, as well as the kinematic design parameters for the
encoder and decoder. Table I lists the parameters and their
values. For the demonstration, the planner is the simple
random joint generator providing feasible joint values as
described in Sec. III. The used point-to-point trajectory
generator is described in Sec. IV-B. For the controller, we use
two independent P controllers with pre-compensation [15]
acting on the difference between the measured and desired
Clarke coordinates. The output of the controller is passed
through a decoder to a displacement-actuated continuum
robot in simulation.

For the system consisting of the framework and the cou-
pled displacement-actuated continuum robot, the sampling
time is set to 10ms. To simulate the displacement-actuated
continuum robot, each actuator is modeled as an interdepen-
dent first-order proportional delay element (PT1) system. The
time constant for each PT1 system is uniformly set to 200ms.
We include additive noise, drawn from a uniform distribution



Fig. 6. Framework based on Clarke coordinates. Each of the components of the framework, i.e., sampling, trajectory generation, and control, are solely
defined in terms of the Clarke coordinates. Using an encoder as an interface, existing frameworks can be included and reused. A switch depicted as a
circular symbol enables or disables external inputs. The right-hand side represents the interface with a displacement-actuated continuum robot.

with an amplitude of 0.1mm, to measure displacement-
actuated joint values ρm. The robot is mass-less as only
the kinematic constant curvature model is considered for the
visualization. To account for several segments, each segment
is treated independently and has its own instance of the
framework as depicted in Fig. 7, where all frameworks have
the same parameters stated in Table I. To synchronize all
trajectories across the frameworks, the maximum duration is
computed and used.

Fig. 7. One segment, one framework

The parallelized framework illustrated in Fig. 7 provides
displacements, which are sent to the displacement-actuated
continuum robot. Figure 8 shows the Clarke coordinates and
their time derivatives generated by the trajectory generator
(18).

As can be seen from the image sequence in Fig. 10, a
displacement-actuated continuum robot with four segments
can move from a start configuration to a goal configuration.
The course of the desired and executed trajectories are shown
in Fig. 9.

VII. DISCUSSION AND FUTURE WORK

The general approach of the proposed framework is to
construct components of the framework using Clarke coor-
dinates. The components of this framework are a planner,
a trajectory generator, and a controller. Each of them can
be switched to a different component utilizing Clarke coor-
dinates. Furthermore, using an encoder (5), the framework
can bypass components to incorporate approaches that are
not based on Clarke coordinates. Currently, the framework
is limited to kinematics, the independence of each segment,

Fig. 8. Planned trajectory using Clarke coordinates.

and the utilization of relatively simple components. This can
be overcome by incorporating dynamic models and more
sophisticated approaches for each component.

Furthermore, the only component with feedback is the
controller. However, a large variety of different approaches
with feedback from the robot and environment exist in the
literature. For instance, collision avoidance for static and
dynamic environments. For the former, the formulation of
C-space obstacles [16] on the manifold is an interesting
direction. For the latter, adapting potential fields [17] on the
manifold is worth pursuing. Due to the low dimensionality
of the 2 dof manifold, it is expected to have the potential to
be more computationally efficient.

In general, each of the components is exchangeable. As
shown in Fig. 6, each component has input and output
defined as Clarke coordinates. Moreover, due to the use
of Clarke transform [5], it inherits the potential benefits of
being computationally efficient, interpretable, closed-form,
and compact in the formulation. One might say that the
components are defined in their canonical formulation since
Clarke coordinates are the unification and generalization



Fig. 9. Displacement-control. (1st column) Desired path vs. open-loop behavior of the PT1 with noisy measurements. The noise is more pronounced for
shorter displacements amplifying the noise-to-signal ratio, cf. segment #2 and segment #4. (2nd column) Desired path vs. closed-loop behavior. (3rd column)
Velocity of the desired path. (4th column) Acceleration of the desired path that shows continuous acceleration profile, i.e., C3 smoothness. Measured velocity
and acceleration are not used due to the high noise. Observe that the kinematic constraints vmax = 10mm/s and amax = 10mm/s2 are complied with.

t = 0.11 s t = 0.51 s t = 0.92 s t = 1.32 s t = 1.72 s

t = 2.12 s t = 2.52 s t = 2.93 s t = 3.33 s t = 3.73 s

t = 4.13 s t = 4.53 s t = 4.94 s t = 5.34 s t = 5.74 s

Fig. 10. Image sequence of a motion. The outputs of the controllers are fed to a displacement-actuated continuum robot with four segments. For the
visualization, the CRVISTOOLKIT is used.



of improved state representations. However, the cost of
time and effort might not justify the reimplementation of
an existing framework. To reap the benefits of particular
components, the encoder-decoder architecture [8] presented
in Sec. II-D allows to include components based on Clarke
transform into an existing framework not formulated with
Clarke coordinates. Figure 5 shows this for the controller
component. This is akin to using quaternions in certain parts
of a bigger framework mainly relying on rotation matrices.

Regarding the generation of trajectories, loosely speaking,
the trajectory generator (15) for the joint space is Clarke
transformed onto the manifold to form the trajectory gener-
ator (18) for Clarke coordinates. While (15) is transformed
using (7), the kinematic constraints for (18) are not simply
obtained. Furthermore, the used point-to-point trajectory
generation as defined for (15) and (18) are commonly used
for independent positions in Task space or independent joint
values of a serial kinematic rigid robot. Therefore, those
constraints are not directly related to the joints. For future
work, we will investigate the use of virtual displacement.

To show that the framework is not limited to constant
curvature assumption [7] and to derive necessary relations
improving the understanding of sampling and kinematic
constraints, we delved into the virtual displacement [9], [5]
and displacement constraint (3). We establish in Sec. II-
C that the displacement constraint (3) is not a result of
constant curvature. Further connections to parallel curves are
made that reframe geometric insights by Simaan et al. [11]
and Burgner-Kahrs et al. [18]. In the case of displacement-
actuated continuum robots, the displacement constraint (3)
and parallel curves imply that the centerline needs to be
sufficiently smooth and the tip orientation ϕ is related to
displacements. In contrast and in general, parallel curves for
a piecewise linear curve akin to a serial-kinematic robot do
not have this property, i.e., (3).

More importantly, the geometric insights on parallel curves
imply that no displacement, i.e., ρ = 0, is detected if the
tip orientation ϕ is the same as the base orientation, i.e.,
ϕ = 0. This is depicted in Fig. 3. This has implications
for the design of high-level planners, controllers, and sensor
placement. For instance, a proprioceptive sensor based on
displacement-actuated joints might not register an interaction
with the environment, e.g., unwanted collation, or desired
manipulation. However, non-constant joint location along the
structure, e.g., non-straight tendon routing, will create a non-
zero displacement constraint, cf. (3), in general. To investi-
gate this challenge, future work will include the extension to
more general joint locations varying along the structure of a
displacement-actuated continuum robot.

VIII. CONCLUSIONS

We lay out a principle to formulate a complete framework
using Clarke coordinates. Besides benefiting from the unified
formulation on the 2 dof manifold, this framework has two
key features. First, each of the components is interfaced
using the Clarke coordinates allowing for modularity that
comes with the associated advantages. Second, an encoder

acts as an interface to allow the integration of external
components that are not formulated using Clarke coordinates.
Those features allow both in-house and external developers
from different labs to integrate, among others, task planners,
control schemes, and machine learning algorithms. This can
accelerate innovation and drive the adoption of components
that are built for displacement-actuated continuum robots.
To clarify, the present framework does not rely on constant
curvature assumption. We anticipate that this paradigm shift
of creating frameworks enables knowledge transfer between
research communities to accomplish complex tasks for real-
world application with these robot systems.
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