
Smooth Point-to-Point Trajectory Planning in SE(3)
with Self-Collision and Joint Constraints Avoidance

Reinhard Grassmann, Lars Johannsmeier and Sami Haddadin

Abstract— In this paper we introduce a novel point-to-
point trajectory planner for serial robotic structures that
combines the ability to avoid self-collisions and to respect
motion constraints, while complying with the requirement of
being C 4 continuous. The latter property makes our approach
also suited for 4th order dynamics flexible joint robots, which
gained significant practical relevance recently. In particular,
we address the problem of generating a smooth, kinematically
nearly time-optimal SE(3) trajectory while simultaneously
avoiding potential collisions of the robot end-effector with its
base as well as respecting the Cartesian unreachable states
induced by the joint limits of the proximal kinematic structure.

I. INTRODUCTION

Consider a robot manipulator that moves its end-effector
from start pose to goal pose with a point-to-point (p2p)
planner. Essentially there are two alternatives for achiev-
ing this. Namely, planning in joint space or in Cartesian
space. Due to the fact that a planned path in Cartesian
space may generate unreachable intermediate points [1],
the robot manipulator could collide with itself or run into
its mechanical joint limits. Consequently, the robot cannot
follow a given trajectory, which will cause it to stop or
produce an undesirable and potentially dangerous motion.
Thus, it represents a safety risk to both itself as well as its
environment including humans. In contrast, a planned path
in joint space can avoid unreachable points with relatively
small planning effort. However, Cartesian obstacles cannot
be considered efficiently [2]. Furthermore, it may produce
undesirable trajectories which are neither intuitive nor pre-
dictable for human co-workers.

a) State of the Art: In order to avoid self-collisions and
calculate unreachable intermediate points, the Configuration
Space approach [3] can be applied to different path plan-
ning algorithms [2], [4]. Also online optimization has been
commonly used [5]. Noticeably, the problem of self-collision
avoidance is theoretically solved, however, often requiring
high computational loads [6], which is not necessarily useful
or needed for all cases [4].

The generation of such trajectories is well covered by
standard robotics textbooks [1] and is extensively studied
in [7], [8]. Note that it is necessary for both the geometric
path and the velocity profile to be continuous in order for
the trajectory to be considered continuous. In trajectory
planning especially two properties are of high relevance,
namely smoothness and duration. Most of the trajectories

R. Grassmann is with Laboratory for Continuum Robotics, Faculty of
Mechanical Engineering, Gottfried Wilhelm Leibniz Universität Hannover,
30167 Hannover, Germany grassmann@lkr.uni-hannover.de

L. Johannsmeier and S. Haddadin are with Munich School of
Robotics and Machine Intelligence, Chair of Robotics Science and
Systems Intelligence, Department of Electrical and Computer Engi-
neering, Technical University of Munich, 80797 Munich, Germany
firstname.lastname@tum.de

This work has been conducted, when all authors were still with Institute
of Automatic Control at Gottfried Wilhelm Leibniz Universität Hannover.

in literature are designed for rigid industrial robots and
show at most C3 smoothness or less. For kinematically
time-optimal motions trapezoidal-like velocity profiles are
commonly used [7]. Usually, these profiles strictly adhere to
motion constraints such as desired velocity. This may lead
to overshooting in case the given trajectory is too short. A
common countermeasure for this is to recalculate the motion
constraints and the total displacement in an iterative way
(see e.g. [9]) or the problem is neglected [10], [7]. Another
method for constructing trapeziodal-like velocity profiles,
which is based on convolution, is proposed in [10]. In
[11], [12] a C4 smooth trajectory was developed. However,
the method requires many trajectory segments, resulting in
increasing complexity w.r.t. the design of a feasible overall
trajectory.

Furthermore, relatively few publications (e.g. [13]) cover
the simultaneous interpolation of both position and orienta-
tion. Most approaches consider position or a single degree-
of-freedem (DOF) only. Interpolation of orientation is only
rarely treated. However, it is indeed well known and accepted
that quaternions are so far best suited for representing [14],
[15] as well as interpolating [16] rotations. Slerp (spherical
linear interpolation) [17] is the standard for interpolation
between two rotations. However, it generates C0-smooth
trajectories, which are not sufficient for robotic applications
due to the fact that such trajectories cause oscillations and
result in low performance tracking. In [9] a quaternion based
trajectory planner is developed which is jerk-bounded and
thus C3-smooth.

b) Contribution and Organization: In the present work
we introduce a complete approach for simultaneous trans-
lation and orientation interpolation. We propose a trajectory
generator, which employs a simple, yet effective and smooth
trajectory that respects a defined virtual obstacle. In partic-
ular, following contributions are made:
• A C 4 smooth trapezoidal-like path velocity profile with

three segments is developed and its formalism provided.
• Interpolation of position and orientation in Cartesian

space, taking into account motion constraints such as
maximum velocity and acceleration.

• A novel quaternion-based interpolator is introduced that
generalizes the well-known Slerp method [17].

• A new path generator is introduced that calculates a
feasible path w.r.t. self-collisions caused by the end-
effector with the base prior to execution. Potential
collisions are avoided by making use of the Problem
of Apollonius.

• An interpolator framework is formulated that combines
the other contributions for application to a 7-DOF robot
with only little parameterization effort.

Figure 1 depicts the overall organization of the paper.
In Sec. II the considered problem is defined. Section III
describes the proposed trajectory planner. A comparison with

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. DOI: 10.1109/IROS.2018.8594339

https://doi.org/10.1109/IROS.2018.8594339

two different standard p2p trajectory planners is carried out
in Sec. IV. Finally, the paper concludes in Sec. V.

Quaternion

Problem

Additional

Motion Law Framework

Translation Experiments

Sec. III-B

Sec. III-C

Sec. II Sec. III-D

Sec. IV

Features

Sec. III-A

x(t) ∈ R3

[x(t), ξ(t)] ∈ SE(3)

Motion Constraints

ξ
(
t
)
∈
S
O
(
3
)

Constraints

and C4

Obstacles
Virtual

as

(see Appendix)

Fig. 1: Organization of the paper.

II. PROBLEM STATEMENT

In this section, we formalize the concept of unreachable
intermediate points of the robot end-effector when moving
in Cartesian space between a start pose xstart and a goal
pose xgoal. Also, we motivate the need for C4 continuous
trajectories in flexible-joint robotics. Note that in Sec. II-
A only translation is considered for sake of clarity, the
extension to orientation is provided in Sec. II-C.

A. Self-Collision and Smoothness for 6-DOF
The class of systems we consider in this paper is a flexible

joint robot with six joints, indicated by dashed joint axes in
Fig. 2a. Each of its joint angles qi has inequality constraints
due to mechanical end limits, restricting the joint range
to interval [qi,lb, qi,ub]. For sake of simplicity and practical
relevance, we assume qi,ub = −qi,lb.

q2

q1
q3

q7virtual

O

additionalsphere joint

q4
q5

q6

Uc,b

Uc,m

(a)

q3

q3,ub
q2

q2,lb

q1

xstart

xgoal

(b)

Fig. 2: (a) Exemplary 6-DOF manipulator (dashed joint axes) with extension
to the 7-DOF case (dotted joint axis), (b) Cartesian motion imposed by joint
limitation q3,ub. The dashed line is the desired trajectory, the dotted line is
the possible deviation caused for running into joint limits and being pushed
back.

Specifically, we make two basic assumptions in order to
restrict the problem practically. First, the first two joint axes
are assumed to intersect, and the second and third joint axes
to be genuine parallel. Secondly, we assume that the first
link is cylindrically shaped or at least this is a resonable
approximation.

In Fig. 2b a desired trajectory that leads from xstart to
xgoal in Cartesian space is shown (dashed line). The dotted
line depicts a possible feasible movement of the robot. Note
that this is only one possible movement e.g. produced by a
compliant Cartesian impedance controlled robot. In this case
the end-effector moves along the upper Cartesian constraint
imposed by th joint constraint q3,ub of q3. The real behavior
of the robot when moving on this path obviously depends

on many factors. A position controlled robot would usually
simply stop and abort the motion entirely.

From this observation and based on the stated assumptions,
we define the following sets of unreachable points.

Definition 1: The set Uj,m contains all unreachable posi-
tions w.r.t. mechanical end stops in joint space of the 2nd

and 3rd joint. Uc,m is its mapping to Cartesian space. �
Definition 2: Uc,b is the set containing all Cartesian points

belonging to a cylindrical shape that encompasses the robot’s
first link. Uj,b is its representation in joint space. �

Definition 3: We define Uj = Uj,m ∪ Uj,b as the set of all
unreachable points in joint space and Uc = Uc,m ∪ Uc,b as
the set of all unreachable points in Cartesian space. We also
call these sets unreachable intermediate points. �

We approximate Uc,m with a sphere with radius rm and
center point xm, which coincides with the intersection of
the first two joints. Uc,b is a cylinder with radius rb and a
central axis that is collinear to the first joints axis.

Definition 4: From these definitions we can define the
virtual obstacle O, see Fig. 2a. O is a cylinder with radius
rO = max{rm, rb} and height hO = xm,z + rm. �
Note that subsequently we only use the task space represen-
tation of the virtual obstacle.

Now that the virtual obstacle is defined, the robot requires
the capability to automatically avoid it. Since it is more
intuitive to represent the obstacle in Cartesian space and joint
trajectories are known to be counterintuitive for humans, we
subsequently design a Cartesian trajectory planner, for which
the overall problem statement is as follows:

Find a C4 continuous Cartesian trajectory from start
pose to goal pose while avoiding the virtual obstacle O.

Generally, smooth trajectories are desirable because they
avoid structural oscillations [7], [13], increase accuracy in
the tracking of the end effector [18] and reduce energy
consumption [9]. Moreover, as a benefit to human-robot
collaboration, they ”appear” more natural [13], resulting in
improved user acceptance.

B. Notions on the Extension to 7-DOF

The previous assumptions can be easily extended to the
standard kinematics 7-DOF case. Note that for sake of
simplicity we insert the additional 7th joint (dotted joint axis)
after the 2nd joint in order to avoid restructuring the example
from Fig. 2a.

The set Uc,b remains since it only depends on the first link.
The set Uc,m is still the same sphere because when moving
the additionally inserted 7th joint the end effector follows
the surface of the sphere Uc,m, see Fig. 3. In conclusion,
the 3D case holds for both kinematically redundant (7-DOF)
and non-redundant robot manipulators that have the well-
established structure depicted in Fig. 2a.

C. End-Effector Orientation

Incorporating the orientation of the robot end-effector can
be done in a conventional fashion by encasing it with a
virtual sphere that is configuration independent. The center
of this sphere is located in the geometric center of the end-
effector. In our case, and for sake of simplicity, we assume
the center point of the end-effector to be at the intersection
of the last three joints, see Fig. 2a.

q3

q2

q1

circle for q7

circle for q1

q7

circle for q2

Fig. 3: Effect of the 7th joint on the sphere, resulting from joint limits.

Shrinking the radius of this virtual sphere into a point
has no effect with regard to potential self-collisions if the
radius and height of the virtual obstacle O are increased
by the same amount. Thus, we do not have to consider the
orientation explicitly in the following. Note the similarity to
the Configuration Space approach [2].

Obviously, a more accurate approach with regard to ex-
ploiting available workspace would involve matching ex-
act geometric shapes for the end-effector. However, this
also results in significantly more complicated algorithms
for detecting intersections with the virtual obstacle O and
subsequently avoiding them. We intend to address this topic
in future work.

III. APPROACH

In this section we introduce our approach to solve the
problem of planning a Cartesian C4 smooth trajectory in the
presence of a virtual obstacle O. First, we define a motion
law. Then, taking this law into account, we present a group of
geometric paths that can avoid O, while complying with C4

requirement. Finally, we describe the framework as a whole,
unifying the components in a logical decisional structure.

Note that the geometric paths for the translation and orien-
tation components are defined separately and then synchro-
nized in order to design the complete desired path. Without
a separate definition of both components an undesired screw
motion could be generated and its translation component is
generally not a straight path [13]. Furthermore, since obstacle
avoidance for orientation is considered in Sec. II-C, it is only
necessary to design the geometric paths for the translation
such that O is avoided.

A. Motion Law
The following motion law is built based on a trapezoidal-

like velocity profile with three segments. They are denoted
as lift-off, cruise and set-down. For sake of simplicity, we
assume the motion constraints to be symmetric w.r.t. upper
and lower values. In order to achieve a C4 smooth trajectory
the velocity profile is designed with C3 polynomial functions
for the first and the third segment and a constant second seg-
ment with durations Tlift-off, Tset-down and Tcruise, respectively.
Furthermore, T := Tlift-off + Tcruise + Tset-down is the total
trajectory duration.

The normalized polynomial function v (ζ) ∈ [0, 1] for the
lift-off and the set-down velocity segments is

v (ζ) = −20ζ7 + 70ζ6 − 84ζ5 + 35ζ4, (1)

where ζ ∈ [0, 1] is the time primitive [7]. The coefficients
in (1) fulfill the null boundary condition, meaning that the

first three derivatives of (1) are zero at ζ = 1 and ζ = 0. By
integrating (1) w.r.t. ζ we obtain

V (ζ) = −2.5ζ8 + 10ζ7 − 14ζ6 + 7ζ5, (2)

which is utilized for the position segments. The three seg-
ments of the velocity profile ṡ are designed as

ṡlift-off (τ) = λvmaxv (τ) , (3)
ṡcruise (τ) = λvmax = const., (4)

ṡset-down (τ) = λvmaxv (1− τ) , (5)

where λ is a scaling factor that is properly defined in (11),
vmax is the maximum velocity. τ(t) with t ∈ [0, T] is defined
as

τ =



t

Tlift-off
for 0 ≤ t < Tlift-off

t− Tlift-off

Tcruise
for Tlift-off ≤ t<T−Tset-down

t− Tlift-off − Tcruise

Tset-down
for T − Tset-down ≤ t ≤ T

(6)

The position profile is obtained by integrating (3), (4) and
(5), leading to the definition of the motion law s(t).

Definition 5: s(t) is a piece-wise defined function

s(t) =



0 for t < 0

slift-off(t) for 0 ≤ t < Tlift-off

scruise(t) for Tlift-off ≤ t < Tcruise + Tlift-off

sset-down(t) for Tcruise + Tlift-off ≤ t < T

L for T < t,

(7)

with

slift-off (t) = λvmaxTlift-offV (τ(t)) , (8)
scruise (t) = λvmax (Tcruiseτ(t) + Tlift-off/2) , (9)

sset-down (t) = L− λvmaxTset-downV (1− τ(t)) , (10)

where L is the total displacement of the geometric path. �
Examples generated by the motion law s(t) are depicted

in Fig. 4. Note that s(t) is not a path primitive since it is
not generally defined for [0, 1] but for [0, L] instead, as it is
not independent of L.

In case L is too short such that the maximum velocity
vmax and acceleration amax cannot be reached, both motion
constraints (vmax and amax) are automatically adapted by the
scaling factor λ, which is defined as

λ =

1 for Tcruise(λ = 1) ≥ 0
16 amax

35 v2max
|L| otherwise. (11)

The durations of the respective segments are calculated as
follows. Computing the maximum derivative from (3), which
is an acceleration and can be set equal to λamax, leads to

Tlift-off = Tset-down =
35 vmax

16 amax
. (12)

The scaling factor λ is canceled out for the first and third
segment, leading to a constant duration w.r.t. λ. The duration
Tcruise for the constant velocity part is given by

Tcruise =
L

λvmax
− 35 vmax

16 amax
. (13)

Fig. 4: Three examples of positions, velocities and accelerations of s(t)
with different total displacements L1, L2 and L3, respectively. The first
trajectory (L1) has a constant velocity segment, while the second (L2)
does not. The third trajectory (L3) is even shorter and cannot reach vmax
and amax. Therefore, the maximal velocity and acceleration is scaled by λ.

Equation (13) can be found by combining and reordering
the sum of the length, which can be obtained from (8)-(10).
The velocity profiles are determined with vmax and amax.
Although the maximum jerk jmax can be considered as well
it would result in an over-determined equation system. In
order to make use of it, we compare the required times
Tset-down, jerk and Tset-down, acc. Since Tlift-off = Tset-down and
Tlift-off is obtained w.r.t. the maximum acceleration amax from
(12) we denote this quantity by Tlift-off, acc. Analogous to (12)
we may calculate the required time as

Tlift-off,jerk =

√
84

5
√
5

√
vmax

jmax
. (14)

The new duration of segement lift-off and set-down, respec-
tively, is then

Tlift-off = max (Tlift-off,jerk, Tlift-off,acc) (15)

Note that only either maximum acceleration amax or max-
imum jerk jmax can be reached. In case that (14) is larger
than (12), the maximum velocity and maximum acceleration
need to be recalculated as

vmax =
L

λ (Tcruise + Tlift-off)
and (16)

amax =
35L

λ16Tlift-off (Tcruise + Tlift-off)
. (17)

(16) and (17) can be derived from (12) and (13), respectively.
Note that (16) and (17) can be used to synchronize n degrees
of freedom by rewriting them as

vscal,i =
Li

λ (Tcruise,max + Tlift-off,max)
and (18)

ascal,i =
35Li

λ16Tlift-off,max (Tcruise,max + Tlift-off,max)
, (19)

where Tcruise,max = maxi (0, Tcruise,i). The index i = 1, . . . , n
indicates the respective degree of freedom in Cartesian space
and the max subfix denotes the maximum duration of the
respective segment considering all n degrees of freedom.
This is used later to synchronize different components of
a trajectory e.g. translation and orientation components or
components of a straight line trajectory.

B. Geometric Path and Trajectory - Orientation
After having defined the motion law, let us now in-

troduce the aforementioned geometric paths, starting with
orientation. As mentioned in Sec. II the interpolation of the
orientation is independent of the consideration of the virtual
obstacle O. Thus, it can be viewed independently from the
translation and the obstacle.

a) Quaternion Interpolation: A unit quaternion [19] is
a hypercomplex number denoted by ξ = η+ ε1ı+ ε2+ ε3k
with property η2+ ε21+ ε

2
2+ ε

2
3 = 1, where ı,  and k follow

Hamilton’s rule ı2 = 2 = k2 = ık = −1. A quaternionic
conjugate of ξ is defined as ξ∗ = η−ε1ı−ε2−ε3k, which is
also the inverse ξ−1. The associative and non-commutative
product of two quaternions ξ and ξ′ expands to

ξξ′ = (η + ε1ı+ ε2+ ε3k) (η
′ + ε′1ı+ ε′2+ ε′3k)

= (ηη′ − ε1ε′1 − ε2ε′2 − ε3ε′3)
+ (ηε′1 + η′ε1 + ε2ε

′
3 − ε′2ε3) ı

+(ηε′2 + η′ε2 + ε3ε
′
1 − ε′3ε1) 

+(ηε′3 + η′ε3 + ε1ε
′
2 − ε′1ε2) k. (20)

The embedding of a vector p = (x, y, z)
T ∈ R3 is defined

as ρ = 0 + xı+ y+ zk, which is needed later for rotating
a vector. Such quantities are called pure quaternions.

Unit quaternions can be used to represent orientation,
while quaternion multiplication can be used to retrieve the
result of a rotation. Let baseξstart and baseξgoal denote the
unit quaternion expressing the orientation of the two frames
w.r.t. the base frame. The superscript denotes the frame in
which a unit quaternion is expressed. And the subscript
denotes the frame to which it refers. The result of the
quaternion product

baseξd (θ) =
baseξstart

startξd(θ) (21)

describes an interpolation between start orientation baseξstart
and the goal orientation baseξgoal. The transition between
them is described by the quaternion startξd(θ). The quaternion
startξd complies with startξd(θ = 0) = 1 and startξd(θ = θL) =
startξgoal. To achieve those conditions, the unit quaternion

ξ (θ) = cos (θ) + (nxı+ ny+ nzk) sin (θ) (22)

is used, where n = (nx, ny, nz)
T with ‖n‖2 = 1 is a fixed

axis and θ is the angle between the two given orientations.

The product startξbase
baseξgoal yields the axis n and the goal

angle θL in (22), where startξbase is the inverse to baseξstart.
Applying the proposed motion law from Def. 5 to the

geometric path defined by (21) and (22) leads to
baseξd (θ(t)) =

baseξstart
startξd (s (t)), (23)

a C4 continuous p2p trajectory in SO(3) with L = θL,
vmax = ωmax and amax = αmax, being the orientation motion
constraints. Note that other interpolation methods are also
applicable such as (1), leading to θ(t) = θLv(t/T).

Orientation motion constraints can easily be taken into
account because the different axes of the angular velocity
ω = (ωx, ωy, ωz)

T and acceleration α = (αx, αy, αz)
T

w.r.t. the base frame are uncoupled and linear:

ωx = nxθ̇(t) , ωy = ny θ̇(t) , ωz = nz θ̇(t) , (24)

αx = nxθ̈(t) , αy = ny θ̈(t) , αz = nz θ̈(t) . (25)

Equations (24) and (25) hold because the rotation axis n
is fixed during interpolation. Note that if Euler angles are
used, orientation motion constraints cannot be expressed in
algebraic form [2]. Hence, none of the twelve sets of Euler
angle triples (e.g. RPY) are able to take into account the
orientation motion constraints efficiently.

b) Relation to Slerp: In the following, we show that
(21) with the interpolated angle θLv(ζ) is the generalized
version of Slerp [17] w.r.t. the exponent h and its smoothness
with v(ζ) being an arbitrary path primitive, while ζ is its time
primitive. Slerp is defined as

Slerp (ξ0, ξ1;h) = ξ0 (ξ
∗
0ξ1)

h
, (26)

where ξ0, and ξ1 are quaternions and h is linearly in-
terpolated in the interval [0, 1]. The quaternion ξ∗0 is the
quaternionic conjugate of ξ0. The power of a quaternion
raised to an arbitrary exponent h is taken from [20] as

ξh = cos (hθ) + (nxı+ ny+ nzk) sin (hθ) , (27)

where the angle θ is multiplied by the exponent h ∈ R.
Substituting θ in (22) with θLv(ζ) results in the right side
of (27), from which we obtain

startξd (θLv (ζ))
(27)
= (startξd (θL))

v(ζ) (28)

=
(

startξbase
baseξgoal

)v(ζ)
. (29)

By comparing (29) with (26), we can conclude that (21)
is identical to (26) if θL is interpolated with a linear path
primitive i.e. v(ζ) = ζ = t/T . The linear path primitive
unveils that Slerp in terms of (26) generates only a C0

smooth trajectory. Furthermore, it inherits the property of
being the shortest great arc between the two quaternions on
the unit quaternion sphere.

One can say that the exponent h in (26) is the time
primitive ζ of the path primitive v(ζ). Hence, an imple-
mentation of Slerp can be extended by inserting h into
the path primitive i.e. v(ζ) = v(h), leading to smoother
orientation interpolation (cf. (24) and (25)). A more pratical
implementation of Slerp adapted from [17] is then given by

baseξd (θLv) =
sin ((1− v)θL)

sin (θL)
baseξstart

+
sin (vθL)

sin (θL)
baseξgoal, (30)

with v = v(ζ). By applying the substitution h = v(ζ) we
may now generalize Slerp even to Cn. We may achieve the
same result with our approach by using θ(t) = θLv(t/T). It
is important to note that we can use an arbitrary function for
θ(t) such as Def. 5 and thus (21) is not limited to having a
path primitive, i.e. θ(t) = θLv(t/T), as it is the case with
Slerp. Therefore, (21) is more general than Slerp can be.

C. Geometric Path and Trajectory - Translation
In the following we discuss three relevant cases of geo-

metric paths regarding the avoidance of O and, therefore,
unreachable intermediate points. As an initial situation we
always have a starting position xstart and goal position xgoal,
both assumed to be outside of O. For more readable notation
we defineOxy as the projection ofO onto the xy-plane of the
robot base frame. Similarly, we define xstart,xy and xgoal,xy
as the projection of xstart and xgoal onto the same plane,
respectively.

We distinguish three different cases regarding intersections
of a line, leading from xstart to xgoal with O.

1) The first case is that no intersection occurs between
the obstacle and the line, see paragraph a).

2) In the second case the line intersects the obstacle and
either xstart,xy or xgoal,xy lie in Oxy , see paragraph b).

3) All other possible situations are dealt with by the third
case, see paragraph c).

a) Straight Line Trajectory: The first case of possible
intersections results is a straight line in Cartesian space. By
applying the motion from Def. 5 we get

xd(t) = xstart + [sx(t) sy(t) sz(t)]
T (31)

with [Lx Ly Lz]
T
= ‖xgoal − xstart‖2.

Note that we assign vmax,i and amax,i component-wise.
We may derive them from a desired path velocity vd and
acceleration ad by making e.g. use of the Pythagorean
theorem.

In order to synchronize the Cartesian axes, the scaling
factor λ defined by (11) and the durations Tlift-off,max and
max (0, Tcruise,max) are computed w.r.t. the largest displace-
ment Lmax = maxi {Li} using (18) and (19).

b) Circular Arc Trajectory: The second case creates
a circular arc. When this case is projected to the 2D-
case, xstart,xy lies inside Oxy and xgoal,xy outside of it.
Note that, by constructing a path with linear and circular
segments C2 continuity cannot be obtained [7]. Therefore,
we construct a circular arc path by reutilizing the quaternion-
based interpolator (21). In order to make use of it, we need
to introduce following considerations.

Given the well known sandwich product ξρξ∗ = ρ′ which
rotates an arbitrary vector p via the pure quaternion (see
Sec. III-B for a recap) ρ into the rotated vector p′ embedded
into the pure quaternion ρ′. The multiplication with the
conjugated unit quaternion ξ∗ corresponds to a correction
term [19]. This term is needed due to the fact that a single
multiplication generally produces a non-vanishing real part
η of the quaternion and scales the length of vector p. If p
is perpendicular to axis n, no correction is required and the
sandwich product can be simplified. The simplification can
be ρ′ = ρξ∗ or

ρ′ = ξρ, (32)

which rotates vector p with the embedding ρ about the axis
n = (nx, ny, nz)

T . Note that the full angle θ is required
instead of θ/2 due to the fact that no correction is needed.

In order to determine a circular arc, a midpoint m, a start
position xstart and a goal position xgoal may be used. Note
that the calculation of m for our particular case is provided
in Sec. III-D and the start and goal position are obviously
given.

In order to simplify the calculation of the circular arc we
transform xstart, xgoal and m into a new frame A such that
Am is the origin and Axstart coincides with the x-axis of
A and the z-axis coincides with the cross product of Axstart
and Axgoal. Note that m has to coincide with the origin of
A since we rotate Axstart into Axgoal as explained in (32).

Then we define the quaternion ξarc(ψ(t)) with the angle
ψ(t) around the z-axis of A which is interpolated via the
motion law from in Def. 5

ψ(t) = s(t). (33)

Note that L = ψL can be obtained by calculating the angle
between Axstart and Axgoal. Furthermore, vmax = vd/rarc and
amax = ad/rarc, where vd and ad are the path velocity and
acceleration, respectively, and the radius rarc is the length of
Axstart.

In order to obtain the current position Axd(t) we embed
ψ(t) into a pure quaternion ρd(t) via

ρd(t) = ξarc(ψ(t))ρstart, (34)

where ρstart is the embedding of Axstart. Now, we can retrieve
Axd(t) and transform it back to the robot base frame resulting
in the eventual circular arc trajectory.

c) Helicoidal Trajectory: The third case covers all
situations not met by the two other cases, meaning that
the line between xstart and xgoal intersects with O and both
xstart,xy and xgoal,xy are outside of Oxy . Note that a cross
section of O with a plane that contains xstart and xgoal as well
as the shortest possible path between them while not entering
O is in general a (partial) ellipse. Therefore, a circular arc
path is not suitable, since it is impractical to handle it in this
setting. However, a helicoidal path solves this problem.

Generating a helicoidal path is divided into two parts.
First, the circular arc path is utilized by applying xstart,xy ,
xgoal,xy and m with the z component set to zero. Second, a
straight line path along the z-axis is generated based on the
z components of xstart and xgoal. Afterwards both trajectory
parts are synchronized similar to the straight path case.

D. Assembling the system

Now that the motion law, all necessary geometric paths
and the resulting trajectories have been defined, the system
can be assembled into one framework. Figure 5 depicts the
overall scheme.

Fist, we make use of a logical selection mechanism
that decides which of the three aforementioned cases has
occurred. The determination of the respective case is done
by utilizing the problem of Apollonius which then selects
the correct path strategy, see Fig. 5. Also, we show the
calculation of a midpoint m for the case of the circular arc
path and the helicoidal path.

Intersection Detection Straight LineHelicodial Circular Arc
ψL,m, Lz ψL,m,xaux Lx, Ly , Lz

θL,n

{vmax, amax, ωmax, αmax}

θL,n θL,n

{rO, hO}

baseξstart,xstart, baseξgoal,xgoal

Trajectory Planner Trajectory Generator

baseξd(t),xd(t)

choice

Fig. 5: The trajectoy planner chooses a suitable path depending on the
relation of xstart and xgoal with O.

Straight path
Circular arc
Helicoidal path

O

Oxy

(1)

(1)

(3)
(2)

(4)

(5)

(2)

(3)

(4)

(5)

xaux

x′y′-plane

Fig. 6: Possible cases of intersections between intended path and obstacle.
We distinguish between straight path (solid lines, (1), (4)), circular arc (dot-
ted line, (2)) and helicoidal path (dashed lines, (3), (5)). The intersections
are indicated by circles. Note that the depicted coordinate frame is not the
robot base frame but only a visualization aid.

a) Problem of Apollonius: Finding a tangent circular
arc path to the obstacle O is desirable. This requires the
calculation of a midpoint m and leads to the so-called
Problem of Apollonius. The Problem of Apollonius describes
how to construct circles that are tangent to three given
objects, where the objects represent any combination of
points, lines, or circles [21]. We take advantage of two
methods, namely the PPP-method and the CPP-method.
The PPP-method requires three distinguishable points and
provides the midpoint m. By requiring one circle and two
different points, the CPP-method provides midpoints m of
two possible circles. Note that the desired circular arc path
(segment of a circle) is selected choosing the shortest one.

b) Choice of geometric path: The trajectory planner
will check for an intersection between the virtual obstacle
O and the straight line path leading from xstart to xgoal.
The concrete method for detecting the intersection type is
straightforward and uses simple geometry. Figure 6 depicts
how the three cases which require the following steps can
be distinguished.

1) Straight line path: No intersection is detected. A
straight line path between xstart and xgoal is con-
structed.

2) Circular arc path: If an intersection is detected and
either xstart,xy or xgoal,xy lie inside Oxy a circular
arc path on a suitable x′y′-plane is constructed. The
x′y′-plane can be derived from xstart, xgoal and an
auxiliary point xaux which is defined as the intersection
point between Oxy and the line between xstart,xy and
xgoal,xy , see Fig. 6. From this the PPP-method as

0
-1 1

0.5

-0.5 0.5

1

0 0

-0.50.5

-11

(a)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

(b)

0
1-1

0.5

0.5-0.5

1

00

0.5 -0.5

1 -1

(c)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

(d)

0
1-1

0.5

-0.5 0.5

1

00

0.5 -0.5

1 -1

(e)

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

(f)
Fig. 7: 3D example of helicoidal path (a,b), circular arc path (c,d) and back
avoidance feature (e,f).

mentioned in the problem of Appolonius can be used
to determine the midpoint m. The construction of the
circular arc path can then be completed as discussed
in the previous section.

3) Helicoidal path: An intersection is detected and neither
xstart,xy nor xgoal,xy are located inside Oxy . Therefore,
a helicoidal path is chosen. The general idea is to
take advantage of the projections Oxy , xstart,xy and
xgoal,xy making use of the CPP-method, where Oxy is
the required circle.

As described in Sec. III-C the motion law in Def. 5 is
applied to the respective geometric path after its selection.
Then, the translational component is synchronized with the
rotational one, which is interpolated according to Sec. III-B.
Synchronization is achieved by applying (18) and (19).

E. Back Avoidance
Typically, robot manipulators can be limited by mechan-

ical stops to follow a path traversing behind the robot in
Cartesian space. Especially manipulators with six joints suf-
fer from this limitation mostly sternly from the 1st joint. By
implementing a virtual plane that coincides with the origin of
the robot base frame and the center of the unreachable angle
interval of the 1st joint the intersection detection discussed
in Sec. III-D can be easily extended. In the case of an

intersection of the path between xstart and xgoal and the
virtual plane behind the robot the helicoidal trajectory is
chosen by the planner, see Fig. 7f and Fig. 7e. This is a
simple yet efficient and useful extension of the mechanical
joint limit avoidance to the 1st joint.

IV. EXPERIMENTS

For the following experiment we use a 7-DOF DLR
Lightweight Robot III [22]. First, we compare our tra-
jectory planner as defined in Sec. III-D with two simple
p2p-trajectory generators, one in Cartesian space (Cartesian
interpolator) and one in joint space (joint interpolator). Both
generate a straight line in their respective domain. The
accompanying video provides additional visual aid.

a) Setup: In the experiment, a trajectory is planned
between a start and a goal position specified by xstart =
(−0.12, 0.68, 0.45)Tm and xgoal = (−0.12,−0.68, 0.45)Tm
w.r.t. the robots base frame. Since it intersects with the first
robot link it violates the virtual obstacle O. The proposed
trajectory generator is initialized with a description of the
virtual cylinder O (i.e. rO = 0.36m and hO = 0.5m).

b) Result: As can be seen in Fig. 9 the Cartesian
interpolator (xCart, qCart) produces an undesirable motion,
leading to high joint velocities, unnecessary joint movement
and violation of the joint limits. Moreover, its executed path
significantly differs from the straight line path, following the
silhouette of the virtual obstacle O. The joint interpolator
(xjoint, qjoint) generates the shortest path in joint space.
However, in comparison, the executed path in Cartesian
space covers the longest distance. In contrast, the proposed
trajectory planner (xC4, qC4) executes the helicoidal trajec-
tory leading to a suitable path which unifies the advantages
of the other trajectory generators. First, the generated path is
short in terms of covered distance, see Fig. 9 and Fig. 8.
Moreover, it avoids unreachable intermediate points and,
therefore avoids reaching the mechanical stops potentially
creating a dangerous situation, see Fig. 8.

Fig. 8: Time normalized joint angle for joints generated by the joint inter-
polator (qjoint), the p2p Cartesian interpolator (qCart) and our interpolator
(qC4). Note that the robots joints are labeled in increasing order as opposed
to the example in Fig. 2. Noted that q7 is omitted.

V. CONCLUSION

In this paper we introduced a novel trajectory generator
that unifies the generation of C4 continuous point-to-point
trajectories in SE(3) and the ability of avoiding unreachable

Fig. 9: Comparison of the trajectories generated by the standard joint interpolator (xjoint), the p2p Cartesian interpolator (xCart) and the proposed
framework (xC4).

intermediate points for a typical and relevant class of ma-
nipulators. In order to define these unreachable intermediate
points we introduced a general virtual obstacle for this robot
class, encompassing mechanical joint limits as well as the
proximal kinematic structure. The trajectory planner distin-
guishes between three general cases with regard to the virtual
obstacle based on the Problem of Apollonius, and chooses
a strategy accordingly. Furthermore, we developed a new
orientation interpolation algorithm that is a generalization
of the well-known Slerp algorithm. To validate our approach
we tested it on a real robot. The next steps we intend to
take are the generalization of our trajectory planner to via
points and online replanning to be able to react to unforeseen
events.

ACKNOWLEDGMENT

We greatly acknowledge the funding of this work by the
KBee AG.

REFERENCES

[1] J. J. Craig, Introduction to Robotics: Mechanics and Control. Pearson
Education International Press, 2005, vol. 3.

[2] J.-C. Latombe, Robot Motion Planning. Kluwer Academic, 1991.
[3] T. Lozano-Perez, “Spatial planning: A configuration space approach,”

IEEE transactions on computers, no. 2, pp. 108–120, 1983.
[4] Y. K. Hwang and N. Ahuja, “Gross motion planning - a survey,” ACM

Computing Surveys (CSUR), vol. 24, no. 3, pp. 219–291, 1992.
[5] T. Bellmann, M. Otter, and G. Hirzinger, “The DLR robot motion

simulator part ii: Optimization based path-planning,” in Robotics and
Automation (ICRA), 2011 IEEE International Conference on. IEEE,
2011, pp. 4702–4709.

[6] J. Canny, The complexity of robot motion planning. MIT press, 1988.
[7] L. Biagiotti and C. Melchiorri, Trajectory Planning for Automatic

Machines and Robots. Springer, 2008.
[8] T. Kröger, On-Line Trajectory Generation in Robotic Systems, ser.

Springer Tracts in Advanced Robotics, S. Bruno, O. Khatib, and
F. Groen, Eds. Springer, 2010, vol. 58.

[9] M.-X. Kong, C. Ji, Z.-S. Chen, and R.-f. Li, “Application of orientation
interpolation of robot using unit quaternion,” 2013.

[10] D. Beckmann, M. Schappler, M. Dagen, and T. Ortmaier, “New
approach using flatness-based control in high speed positioning:
Experimental results,” in Industrial Technology (ICIT), 2015 IEEE
International Conference on, 2015, pp. 351–356.

[11] K. Ahn, W. K. Chung, and Y. Youm, “Arbitrary states polynomial-like
trajectory (aspot) generation,” 2004.

[12] S.-H. Nam and M.-Y. Yang, “A study on a generalized parametric
interpolator with real-time jerk-limited acceleration,” Computer-Aided
Design, vol. 36, no. 1, pp. 27–36, 2004.

[13] M. Žefran, V. Kumar, and C. B. Croke, “On the generation of smooth
three-dimensional rigid body motions,” IEEE Transactions on Robotics
and Automation, vol. 14, no. 4, pp. 579–589, 1998.

[14] J. Stuelpnagel, “On the parametrization of the three-dimensional
rotation group,” SIAM review, vol. 6, no. 4, pp. 422–430, 1964.

[15] E. B. Dam, M. Koch, and M. Lillholm, Quaternions, interpolation
and animation. Datalogisk Institut, Københavns Universitet, 1998,
vol. 2.

[16] F. S. Grassia, “Practical parameterization of rotations using the ex-
ponential map,” Journal of graphics tools, vol. 3, no. 3, pp. 29–48,
1998.

[17] K. Shoemake, “Animating rotation with quaternion curves,” in ACM
SIGGRAPH computer graphics, vol. 19, no. 3. ACM, 1985, pp.
245–254.

[18] A. De Luca and W. Book, “Robots with flexible elements,” in Springer
Handbook of Robotics. Springer, 2008, pp. 287–319.

[19] I. L. Kantor and A. S. Solodownikow, Hyperkomplexe Zahlen (Ger-
man). Teubner, 1978.

[20] W. R. Hamilton, “On a new species of imaginary quantities connected
with a theory of quaternions,” in Proceedings of the Royal Irish
Academy, vol. 2, no. 1844, 1843, pp. 424–434.

[21] H. S. M. Coxeter, “The problem of apollonius,” The American Math-
ematical Monthly, vol. 75, no. 1, pp. 5–15, 1968.

[22] A. Albu-Schäffer, S. Haddadin, C. Ott, A. Stemmer, T. Wimböck, and
G. Hirzinger, “The DLR lightweight robot: design and control concepts
for robots in human environments,” Industrial Robot: an international
journal, vol. 34, no. 5, pp. 376–385, 2007.

APPENDIX: ADDITIONAL FEATURES

The trajectory planner presented in Sec. III can be used
as a basis for various useful features. In the following, two
of them are introduced.

a) Path scheduling: It is a feature that enables the robot
to shift and/or clinch the orientation component of a trajec-
tory w.r.t. the translation component, and vice versa. This
feature is especially useful in combination with teaching-by-
demonstration. The parameters αstart and αgoal > αstart define
start and end of the orientation interpolation, respectively.
Hence, Ttrans and Trot are set by

Ttrans ← max {Ttrans, Trot} and (35)
Trot ← (αgoal − αstart)Ttrans, (36)

denoting the total duration of translation and orientation,
respectively. Figure 10 depicts more details.

θL

t′

Lx

orientation

translation

αstart
αgoal

t = Tt = 0

x(t)

θ(t′)

t

t′ = 0 t′ = Trot

t = Ttrans

Fig. 10: Path scheduling example with αstart = 0.4 and αgoal = 0.8

b) Obstacles: Note that we do not consider any external
obstacles yet. However, this issue could be approached in
future work by shifting the origin of the xy-plane towards
the geometric center of an external obstacle. The same
computational procedure as introduced in this work would be
applicable and result in a path that circumvents the addressed
obstacle. Eventually a decision process would be required if
multiple obstacles including the robot itself are present to
decide on a valid path through the workspace.

