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Abstract— Recent physics-based models of concentric tube
continuum robots are able to describe pose of the tip, given the
preformed translation and rotation in joint space of the robot.
However, such model-based approaches are associated with
high computational load and highly non-linear modeling effort.
A data-driven approach for computationally fast estimation
of the kinematics without requiring the knowledge and the
uncertainties in the physics-based model would be an asset. This
paper introduces an approach to solve the forward kinematics
as well as the inverse kinematics of concentric tube continuum
robots with 6-DOF in three dimensional space SE(3). Two
artificial neural networks with ReLU (rectified linear unit)
activation functions are designed in order to approximate the
respective kinematics. Measured data from a robot prototype
are used in order to train, validate, and test the proposed
approach. We introduce a representation of the rotatory joints
by trigonometric functions that improves the accuracy of the
approximation. The results with experimental measurements
show higher accuracy for the forward kinematics compared to
the state of the art mechanics modeling. The tip error is less
then 2.3 mm w.r.t. position (1 % of total robot length) and 1.1 ◦

w.r.t. orientation. The single artificial neural network for the
inverse kinematics approximation achieves a translation and
rotation actuator error of 4.0 mm and 8.3 ◦, respectively.

I. INTRODUCTION

Concentric tube continuum robots, which are composed
of multiple concentric, precurved super-elastic tubes, are
inherently compliant and flexible, which enables them to
be used in complex and sensitive environments. As stated
in [4], these are ideal structures for use for robot assisted
minimally-invasive surgery and, furthermore, they open up
new applications. However, despite the simple mechanism of
rotating and translating the component tubes, which can be
seen in Fig. 1, modeling of the kinematics is characterized
by highly non-linear behavior due to the elastic interactions
between the concentric tubes. Achieving fast and accurate
kinematics is an important aspect for online motion plan-
ning and control, which enables the first step to industrial
applications.

a) State of the Art: The common modeling approach is
based on the theory of special Cosserat rods for each tube,
which undergoes bending and torsion [6], [19]. This leads to
no analytical solutions for concentric tube continuum robots
consisting of more than two tubes, or for precurvature that
varies with total robot length. Thus, model based forward
kinematics are typically solved numerically. Additional fac-
tors like tube tolerances and friction have been investigated,
but not effectively integrated yet [9]. For example, in [17]
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Fig. 1. Basic principle of a concentric tube continuum robot with three
tubes. αi and βi are rotation and translation of a given tube i, respectively.

frictional torques are included with the cost of solving a
root finding problem at each integration step with respect to
(w.r.t.) the total robot length. Therefore, additional factors are
commonly not considered due to even higher computational
load and modeling effort.

Regarding inverse kinematics, no analytical solutions have
yet been found and proposed except for exterior simple
systems like a continuum robot with two tubes. There-
fore, common approaches from robotics are applied, e.g.
numerical root finding methods [6] or differential-inverse-
kinematics strategies [2]. Thus, computing the inverse kine-
matics is typically computationally slow. Furthermore, the
convergence is not guaranteed.

In summary, a data-driven approximation of the kinematics
without requiring an accurate physical model would be
beneficial. Such approach would be more accurate in real
scenarios than model-based methods. In [10] the inverse
kinematics of a tendon-driven continuum robot is approx-
imated with an artificial neural network and compared with
a Jacobian-based approach. The latter provides poor results
in terms of accuracy and computational time. In [22] they
proposed three data-driven approaches to learn an accurate
inverse kinematics model for a flexible surgical manipulator.
The inverse kinematics and the forward kinematics of a
pneumatically actuated continuum robot are learned sepa-
rately in [18]. The previous approaches used measured data
and considered the position of the end-effector. Note that
concentric tube robots are structurally different such that
existing data-based methods cannot be directly applied.

Regarding concentric tube robots, initial works [1] used
simulated data to train artificial neural networks which
approximated the forward and inverse kinematics. In order
to estimate the tube rotation, each tube rotation is split
into four quadrants, i.e. [0, π/2), [π/2, π), [π, 3π/2), and
[3π/2, 2π), which leads to a complex output of the artificial
neural network including a selection mechanism. Moreover,
simplifications such as variable-curvature section, i.e. two
tubes are combined to form one tube, and reduced pose, i.e.
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consisting of three positions and two orientations, have been
made. To the best of our knowledge, the initial results in [1]
are the only published results on concentric tube continuum
robots so far.

b) Contributions: In the present work, we introduce a
complete approximation approach of the forward and inverse
kinematics for concentric tube continuum robots based on
neural networks. We simultaneously consider the tip position
and orientation for the forward kinematics and, furthermore,
approximate the inverse kinematics with a single artificial
neural network. For the first time, the approximations with
exhausive experimental data using a concentric tubes con-
tinuum robot prototype with three tubes (6-DOF) have been
investigated.

In addition, we introduce a new trigonometric joint de-
scription, which leads to a simple, yet effective feature
representation for learning purposes and positevely affects
the approximation results. Our approach shows higher accu-
racy in comparison to model-based approaches. As a minor
contribution, we propose a novel adjustment device based on
parallax compensation for the zero point adjustment of the
rotatory actuators.

II. METHODS

In this section, we motivate the need for a new trigono-
metric joint description as well as the need for quaternions.
Moreover, we state the approximation errors for the forward
and inverse kinematics. Finally, a brief description of the
used artificial neural network is given.

A. Joint Space

For the following, it is important to note that the joint
space of m revolute joints can be described as an m-torus
[20]. In this paper, we consider concentric tube continuum
robots composed of three tubes (Fig. 2). Without loss of
generality, all statements can be generalized for concentric
tube continuum robots with arbitrary number of tubes.
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Fig. 2. Concentric tube continuum robot with three tubes. The tubes can be
rotated (αi) and translated (βi) w.r.t. each other. The arc length s describes
the robots shape with its respective tube length Li. The osculating planes
of the tubes correspond to the rotational zero position in the yz-plane.

The joint space Q = α1 × β1 × α2 × β2 × α3 × β3 of a
6-DOF concentric tube continuum robot can be subdivided
in two spaces, in particular A and B, where Q = A × B
is valid. The space A = α1 × α2 × α3 represents a 3-torus
T3 = S1×S1×S1, where S1 is a 1-sphere. Topologically, S1
can be defined in terms of an embedding in two-dimensional
Euclidean space, which leads to a circle. The translational

part characterized by B = β1 × β2 × β3 can be described as
a parallelepiped. Its conditions are

0 ≥ β3 ≥ β2 ≥ β1 and (1)
0 ≤ L3 + β3 ≤ L2 + β2 ≤ L1 + β1, (2)

where Li is the overall tube length of the ith tube. The
inequations (1) and (2) are visualized in Fig. 3 for an example
with two tubes.
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Fig. 3. Joint spaceQ of a 4-DOF concentric tube continuum robot with two
tubes subdivided in A and B. a) Translational joint space B = β1 × β2 ⊂
R2 with its restrictions. It forms a parallelogram. b) Rotational joint space
A = α1 × α2 = S1 × S1 = T2 forms a torus in R3 due to the fact that
the opposite edges of the square are pasted together.

B. Trigonometric Joint Representation

Trigonometric functions were applied on the joint angle
of a planar robot in order to constraint them [14]. We adapt
this idea to concentric tube continuum robots and define the
cylindrical Form γi as

γi = {γ1,i, γ2,i, γ3,i} = {cos (αi) , sin (αi) , βi} , (3)

which describes the ith tube as a triplet. The rotary joint
αi can be obtained by the atan2 function, which gives
the unambiguous correct result in the respective quadrants.
Therefore, the joint αi can be recovered by

αi = atan2 {γ2,i, γ1,i} . (4)

In Fig. 4, a geometrical relationship is established.
Note that αi ∈ S1 and that S1 can be described effectively

in R2. Therefore, all entries of γi are elements of R. This
is an important fact, because an artificial neural network
with real activation function ϕ expects real input values.
Moreover, due to the transformation by means of trigono-
metric function and the use of (4) an artificial neural network
does not have to approximate the atan2 function, which is a
discontinuous function. Therefore, it can be concluded that
γi provides a suitable tube representation for an artificial
neural network.

C. Quaternions

A unit quaternion is a hypercomplex number denoted by
ξ = η+ ε1ı+ ε2+ ε3k with the property η2+ ε21+ ε

2
2+ ε

2
3 =

1. The quaternionic units ı,, and k follow Hamilton’s rule
ı2 = 2 = k2 = −1 and ık = −1. A quaternionic conjugate
of ξ is defined as ξ = η − ε1ı − ε2 − ε3k. The associative
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Fig. 4. Trigonometric joint representation with of αi and βi in the
cylindrical coordinate system, where the radius is one, the height is equal
to βi, and the azimuth is αi. The joint αi can be recovered by the atan2
function.

and non-commutative product of two quaternions ξ and ξ′

expands to

ξξ′ =( η + ε1ı+ ε2+ ε3k ) ( η
′ + ε′1ı+ ε′2+ ε′3k )

= ( ηη′ − ε1ε′1 − ε2ε′2 − ε3ε′3 )
+ ( ηε′1 + η′ε1 + ε2ε

′
3 − ε′2ε3 ) ı

+ ( ηε′2 + η′ε2 + ε3ε
′
1 − ε′3ε1 ) 

+ ( ηε′3 + η′ε3 + ε1ε
′
2 − ε′1ε2 ) k. (5)

Due to Hamilton’s rule, the quaternionic units are similar to
the cross product of two unit Cartesian vectors. Therefore,
it is common to describe a quaternion ξ as follows

ξ = cos (ϑ) + (nxı+ ny+ nzk) sin (ϑ) , (6)

where n = (nx, ny, nz)
T is a fixed axis and ϑ is the angle

between two given orientations.
The main advantage of quaternions is that this represen-

tation of SO(3) is singularity-free and global [21]. The dis-
advantage is the so-called antipodal property, which means
the double coverage of the SO(3), i.e. ξ and −ξ represent
the same orientation. Thus, multiplying a quaternion ξ by
−1 does not change the orientation it represents. However,
by forcing the value of η to be positive, only the half of
the four-dimensional unit-sphere will be used and therefore,
we can overcome the disadvantage of the antipodal property.
This can be achieved by

ξ′ = sign(η)ξ, (7)

where sign(η) gives the sign of η and sign(0) is +1 by
definition.

The combination of a translational displacement t and a
quaternion ξ will give the most efficient alternative among
the point transformation formalism [8]. It is the so-called
quaternion/vector pair [ξ, t]. By using (7), we achieve a
representation, which is singularity-free and globally defined
as well as an bijective mapping. Those properties make the
quaternion/vector pair [ξ, t] suitable for use with artificial
neural networks.

D. Approximation Error

Now, we describe the approximation error for the forward
and inverse kinematics in their domain, i.e. Cartesian space

and joint space, respectively. For the present paper, the hat
is used to denote an approximated value.

a) Cartesian space: The error ex is given by

ex =

√(
tx − t̂x

)2
+
(
ty − t̂y

)2
+
(
tz − t̂z

)2
, (8)

where ti and t̂i are the positions along the corresponding
Cartesian axis. By utilizing a unit quaternion, the rotational
error eϑ is considered as

eϑ = arccos (ηη̂ + ε1ε̂1 + ε2ε̂2 + ε3ε̂3) ∈ [0, π] , (9)

where the approximated unit quaternion ξ̂ = η̂+ ε̂1ı+ ε̂2+
ε̂3k must satisfy the property η̂2 + ε̂21 + ε̂22 + ε̂23 = 1. Thus,
a quaternion ξ̂ must be normalized, if it is approximated by
the artificial neural network.

b) Joint space: Recapping the facts in Sec. II-A, joint
space Q can be divided into A and B. We will take advantage
of this approach, in order to describe the approximation er-
rors eβ and eα. The translational error eβ is straightforward.
It can be described as the Euclidean distance in B and,
consequently, can be defined as

eβ =

√(
β1 − β̂1

)2
+
(
β2 − β̂2

)2
+
(
β3 − β̂3

)2
. (10)

Note that B with its conditions (1) and (2) forms a convex set
(see also Fig. 3a for visualization). Under the assumption that
the rotational error eϑ is small, the tangent space of A can be
determined. To recap briefly, A is a 3-torus T3. Since every
manifold can be locally approximated by a tangent space, we
can apply the Euclidean distance in A. Thus, the rotational
error eα is given by

eα =
√
e2α,1 + e2α,2 + e2α,3, (11)

where the difference eα,i = αi − α̂i for the ith tube can be
computed by applying (4). For (11) we utilize the identity

atan2 (s1, c1)± atan2 (s2, c2) =

atan2 (s1c2 ± s2c1, c1c2 ∓ s1s2) , (12)

where si and ci indicate the relation to sinus and cosine
function, respectively. Consequently, eα,i is determined by

eα,i = atan2 (γ2,iγ̂1,i − γ̂2,iγ1,i, γ1,iγ̂1,i + γ2,iγ̂2,i) (13)

for the ith tube.

E. Artificial Neural Networks

We utilize feedforward networks in order to approximate
the kinematics. An architecture of a feedforward network
is summarized in Fig. 5. Such a feedforward network can
approximate a smooth function in a compact set [13], [5],
[7].

Furthermore, we consider all degrees of freedom w.r.t.
three-dimensional space SE(3) and w.r.t. a concentric tube
continuum robot with three tubes. Thus, no simplifications
are assumed. The Cartesian space SE(3) is described as a
quaternion/vector pair [ξ, t], whereas the joint space Q is
represented by means of γi.



Preliminary examinations in simulation show that ReLU
(rectified linear unit) are computationally efficient and could
produce smaller approximation errors compared to the com-
mon used tanh activation function. Furthermore, it is also
shown that the inputs and outputs do not need to be scaled.
Therefore, the ReLU activation function ϕ(x) = max (0, x)
are used in the hidden layer. The number of artificial neurons
and of hidden layers are determined in preliminary examina-
tions in simulation. The HE-initialization [12] is applied in
order to initialize their weights. As usual, linear activation
functions are used for the output layer. Their weights and all
biases are initialized with a uniform distribution.

For the optimization of the weights ω and biases b, we
used Adam [15] with mini-batch size of Nbs = 128, which
are randomly extracted from the training set Stra in each
epoch Nep. During the preliminary examinations and during
the training with measured data, we discovered that neither
under- nor over-fitting occurred by using the Adam optimizer.
Therefore, there is no need for a validation set, which can
be used in order to detect bad generalization, i.e. under- or
over-fitting. Moreover, Adam converges much faster than a
vanilla gradient descent, which is experimentally observed.
Its individual adaptive learning rates and the use of the first
and second moments of the gradients may cited as a cause
for the described observations.
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Fig. 5. Artificial neural networks as feedforward network. With ωln,m we
denote the weight for the connection between the mth artificial neuron in
the (l − 1) th layer to the nth neuron in the lth layer, whereas bln is used
for the nth bias in the lth layer. Furthermore, the activation aln denotes the
output of the nth artificial neuron in the lth layer.

III. TESTBED AND DATA ACQUISITION

The purpose of the experimental setup is the acquisition
of tip poses with all 6-DOF of SE(3) in order to collect
data for the training and test set. The constructed testbed is
shown in Fig. 6. The geometrical parameters and mechanical
properties of the used concentric tube continuum robot are
listed in Table I.

A. Rotation Adjustment Device

As with conventional robots, in order to properly deter-
mine the kinematics, all joints must be adjusted by finding
or defining the zero position for each joint. Consequently,
all tubes and, therefore, αi and βi must be adjusted to

TABLE I
TUBE PARAMETERS OF THE CONCENTRIC TUBE CONTINUUM ROBOT

PROTOTYPE. THE INNERMOST, MIDDLE AND OUTER TUBES ARE

REFERENCED FORM 1 TO 3, RESPECTIVELY.

Parameter Set of tubes

Term Symbol Unit Tube 1 Tube 2 Tube 3

Length, overall L mm 370 305 170
Length, straight Ls mm 325 205 70
Curvature κx m−1 15.8 9.27 4.37
Diameter, outer Do mm 0.4 0.9 1.5
Diameter, inner Di mm 0.3 0.7 1.2
Young’s Modulus E GPa 50 50 50
Poisson’s ratio ν 1 0.3 0.3 0.3

Fig. 6. Testbed with the concentric tube continuum robot (1), 6-DOF sensor
consisting of two 5-DOF sensors, orthogonally mounted with respect to each
other (2), electro magnetic tracking system (AURORA, Northern Digital Inc.,
ON, Canada) (3), motion controller (DCM4163, Galil Motion Control, CA,
USA) (4), and rotation adjustment device prototype (5).

ensure that all measured data is in the same reference. Note
that the adjustment is not commonly defined for this type
of robot. While adjusting βi is straightforward, finding the
zero position for αi is more challenging. In order to adjust
βi, markers are applied such that the zero position of the
respective carriage are indicated. An adjustment device is
proposed and described in the following, which solves the
adjustment for αi.

Our definition of the zero points is done by the elastic
interaction between the tubes. For the sake of clarity, only
the superposition of all tubes with stable equilibrium is
considered and only tubes with curvature κx are treated.

Because there is exactly one osculating plane for each
tube, the superposition of all three tubes results in an unique
osculating plane, if all tubes are aligned (see Fig. 2). This
requested osculating plane lies in the yz-plane of the concen-
tric tube continuum robot’s origin and defines the zero points
of the rotational joints αi (see Fig. 2). The underlying idea is
that two unique parallel lines (see Fig. 7) always create one
plane. Furthermore, all points of the robot backbone can be
mapped to a straight line in the requested osculating plane,
if all tubes are aligned. It follows that if all three lines lie
in a common plane, then the requested osculating plane is



parallel lines

Fig. 7. Rotation adjustment device for the calibration of αi DOFs:
theoretical sketch (left), prototype (right).

TABLE II
COMPARE THE COMPLETE AND THE RESTRICTED JOINT SPACE. NOTE

THAT THE OVERALL LENGTH OF EACH TUBE DOES NOT CORRESPOND TO

THE MAXIMUM VALUE OF RESPECTIVE β .

complete joint space restricted joint space

αi [◦] βi [mm] αi [◦] βi [mm]

i min max min max min max min max

1 −180 180 −205 0 −60 60 −144 0
2 −180 180 −164 0 −60 60 −115 0
3 −180 180 −115 0 −60 60 −81 0

identical to the plane, which is spanned by the two unique
parallel lines.

Based on the above observation and definition, an adjust-
ment device is proposed. The prototype with the minimum
requirements and properties is shown in Fig. 7. The prototype
is made of a transparent plastic box. On opposite sides, lines
were scratched, representing the mentioned parallel lines.
Furthermore, the prototype is placed such that both lines
intersect with the z-axis of the robot’s base frame. Due to
the transparent material of the prototype we can observe both
lines simultaneously. Therefore, the mentioned yz-plane can
be found by overlapping both parallel lines. Now, all αi are
changed until the backbone of the concentric tube continuum
robot is in its yz-plane. In this case, the projection of the
backbone onto the xy-plane is congruent with both scratched
lines and both parallel lines, respectively. This approach also
avoids the parallax error due to two unique parallel lines.

B. Random Sampling of the Joint Space

The samples of a given robot’s joint space Q are gen-
erated from a uniform random distribution. Each sample
q = [α1, β1, α2, β2, α3, β3] ∈ Q consists of three rotational
and three translational parameters. While the rotational pa-
rameters αi of the robot configuration are independent, the
translational parameters βi interdependent, see (2) and (1).
To limit the error of the gravitational force of the 6-DOF
sensor attached to the robot tip and to increase the density of
the data points, the joint spaceQ has been limited. Therefore,
the translational part is restricted to βi ∈ [−0.7Li, 0mm]
and the orientational part is restricted to αi ∈ [−60 ◦, 60 ◦].
Additionally, an offset Lm such that innermost tube always
extends by 10mm is added to condition (1) in order to
prevent damage to the measuring sensor. Table II compares
the complete and the restricted joint space.

C. Data Acquisition

In order to reduce the error due to the electro-magnetic
tracking system, we measure n = 5 end-effector poses per
sample. Consequently, an appropriate translation t and an
appropriate orientation ξ must be determined.

a) Orientation: For orientation, a quaternion which
yields the smallest quadratic error is searched. For this
purpose, we utilize (9). Therefore, n equations of the form

1 = ηη(i) + ε1ε
(i)
1 + ε2ε

(i)
2 + ε3ε

(i)
3 (14)

must be solved, where ξ(i) = η(i)+ ε
(i)
1 ı+ ε

(i)
2 + ε

(i)
3 k is the

ith quaternion from the ith measurement and the quaternion
ξ = η + ε1ı + ε2 + ε3k is the sought quaternion. By
taking advantage of the Gaussian approach (least squares),
the solution of the equation system

1
1
...
1
...
1
1


=



η(1) ε
(1)
1 ε

(1)
2 ε

(1)
3

η(2) ε
(2)
1 ε

(2)
2 ε

(2)
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η(i) ε
(i)
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(i)
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η(n−1) ε
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2 ε

(n−1)
3

η(n) ε
(n)
1 ε

(n)
2 ε

(n)
3




η
ε1
ε2
ε3

 , (15)

is given by

[η ε1 ε2 ε3]
T
=
(
QT
mQm

)
QT
m1, (16)

where Qm ∈ Rn×4 is the so-called design matrix of ξ(i)

and 1 ∈ Rn×1 is left side of (15). Note that (16) can be also
derived from log-likelihood. Subsequently, the orientation is
normalized with its Euclidean length. For the sake of clarity,
(16) requires at least four measurements.

b) Position: A similar approach for the tip position can
be chosen, i.e. 0 = t− t(i). For n given positions, the mean
position is determined by

t =
1

n

n∑
i=1

t(i), (17)

where t(i) corresponds to the ith measurement.

IV. FORWARD KINEMATICS
In the following, the approximation of the forward kine-

matics is evaluated. For this purpose, we gathered 64,000
pose samples with the prototype described in Section III.
From this set 60,000 samples are used to train a set of
shallow neural networks while the remaining 4000 samples
form our test data set Stest. The joint description (3) is used as
input layer. Table III lists the applied learning and architec-
ture parameters. Because of the randomized HE-initialization
[12] and the randomized selection of the mini-batch from the
training set, networks with the same architecture give slightly
different results. To compensate for this effect we trained 10
neural networks and averaged the results.

To investigate the influence of different joint representation
on the kinematic approximation, we trained an another set of



TABLE III
FEEDFORWARD NETWORKS FOR THE APPROXIMATION OF FORWARD KINEMATICS AND INVERSE KINEMATICS. LISTED ARE THE TRAINING

PARAMETERS, THE ARCHITECTURE OF THE FEEDFORWARD NETWORKS AS WELL AS THE APPROXIMATION ERRORS AVERAGED OVER 10
FEEDFORWARD NETWORKS. THE JOINTS AND THE POSE ARE REPRESENTED BY γi AND [ξ, t], RESPECTIVELY. NEITHER THE JOINTS γi NOR THE POSE

[ξ, t] ARE SCALED. THE APPLIED ADAM OPTIMIZER [15] IS PARAMETRIZED WITH THE LEARNING RATE λ AND THE FURTHER PARAMTERS β1 = 0.9,
β2 = 0.999, ε = 1× 10−8 AND FOLLOW THE NOTATION IN [15].

Kinematics Training with Adam optimizer Architecture Approximation error

Nbs Nes |Stra| λ ϕ Nip Nh Nop ex [mm] eϑ [◦] eα [◦] eβ [mm]

Forward 128 200 60,000 0.0002 ReLU 9 100 7 2.23± 0.25 1.04± 0.08 - -
Inverse 128 200 80,000 0.0007 ReLU 7 (100, 200) 9 - - 8.21± 0.28 4.0± 0.6

Fig. 8. Influence of the representation of the joint space shown by the
development of approximation errors on the test set Stest over the epochs
Nep of the training for every ten feedforward network. The solid red and blue
lines show the median values (solid line), which are limited by the minimum
and maximum approximation errors (shaded region) at the respective epoch.
It can be seen that the feedforward network with γ as representation of the
joints reduces the approximation errors more strongly. The ten feedforward
networks with untransformed αi, however, saturate.

networks which directly accept αi and βi in the input layer.
This reduced the number of parameters in the first layer of
the network, while the remaining parameters are the same as
for the previous set of networks, i.e. Nop = 7 and Nh = 100.

Finally, we compared the results of the learned forward
kinematics with the samples from our test set Stest and a
kinematic model based on Kirchhoff rod theory [19].

A. Results

The approximation errors of the set of networks with γ
as input ex = 2.23± 0.25mm and eϑ = 1.04± 0.08 ◦

have been determined from the entire test set Stest and have
been evaluated at Nes = 200. This corresponds to a relative
position error of 1% w.r.t. the total length of the robot.

In Fig. 8 the course of the approximation error ex and eϑ
given by (8) and (9), respectively, are shown. It compares
the results between kinematic approximation of both set of
networks, i.e. the network with joint description γi and the
network with commonly used joint description αi and βi.

Figure 9 shows 100 positions taken from the test set
Stest. They are compared with positions calculated by a
Kirchhoff based unloaded kinematic model and by a network
which utilize (3). The model-based approach [19] achieves
an approximation error in position ex = 27.4± 5.1mm and
in orientation eϑ = 88.3± 37.3 ◦. The approximated pose of
the feedforward network results in approximation errors of
ex = 2.7± 1.2mm and eϑ = 1.3± 0.9 ◦.

B. Discussion

A better approximation can be achieved by transforming
joints by means of trigonometric functions (3), which can
be observed in Fig. 8. Regarding the set of networks which

directly accept αi and βi as input, it can be argued that the
worse approximation is due to the lower network capacity,
which describes the total number of weights and biases in
artificial neural network. However, this is still true for differ-
ent capacities and different number of activation functions in
the hidden layer. Therefore, the increase in the parameters
resulting from the increase in inputs cannot be cited as a
reason.

Referring to Fig. 9, the simulated positions using the
Kirchhoff model [19] cannot adequately reflect the measure-
ment data due to the non-modeled external forces generated
by the 6-DOF sensor. Force-inclusive models maybe used,
however, the complex form of the 6-DOF Sensor introduces
difficulties to model forces and moments to the tip, which
depend on the pose of the tip. Note that by incorporating
external loading, tip error of 2.91mm and 1.5% of the
length is achieved in [19] with a model-based approach.
Therefore, by including external forces, we would not expect
a better results than in [19] reported relative tip error. For
comparison our relative tip error is 1% of the total robot
length. Furthermore, non-modeled tube tolerances support
the approximation error, see Table I. By contrast, these
difficult to model effects are covered with small approxi-
mation errors by the proposed feedforward network. Hence,
this allows the determination of the forward kinematics by
observing the end-effector pose for different joints. Beside of
the values of the approximation errors, based on the position
of four randomized reference positions, the “distortion” of
the workspace can be intuitively recognized through model-
ing or approximation.

Comparing the resulting approximation errors from Fig. 9
w.r.t. Fig. 8, we observe larger approximation errors in the
subset of the test set Stest, which has 100 measured data. This
indicates that approximation errors depend on the coverage
of the workspace. As the inequalities in (1) and (2) need to
be satisfied by B, the intended uniform random distribution
becomes in fact a non-uniform random distribution in the
translational joint space B. As stated and visualized in [3],
the non-uniform distribution of β2 and β3 reflects the impact
of (1) and (2). To force the uniform distribution as well as
the division of B into equidistant intervals is subject of future
research.

Another sources of approximation error are a dependence
on motion history [6] as well as the influence of hysteresis
and clearance [11]. This can be investigated in future work.
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Fig. 9. Projected three-dimensional points in the three planes of the base coordinate system of the robot. From the left to the right column: computed
positions via the unloaded Kirchhoff model, measured positions from a robot prototype, approximation of the forward kinematics with data from the test
set Stest. The four points give a visual aid in order to see the ”distortion” between the different approaches. For the sake of clarity, it may be better to
show the deformed shape of each method. However, our neural network provides only the pose of the tip.

V. INVERSE KINEMATICS

In the following, the approximation of the inverse kine-
matics is reported. Preliminary experiments showed that a
network with a single hidden layer cannot approximate the
kinematics with a satisfying level of accuracy. Therefore, the
network is extended to two hidden layers. By incorporating
additional hidden layers with ReLU activation functions, net-
works are more accurate [16]. The used learning parameters
and architecture as well as the achieved approximation errors
are summarized in Table III. To train the network 84,000
pose samples have been recorded with the robot prototype
from which 80,000 samples are used as training data Stra
while the remaining 4000 data points form the test set Stest.

A. Results

In Fig. 10 the course of the approximation error eα and eβ
given by (11) and (10), respectively, are shown. We achieve
an approximation error of eβ = 4.0± 0.6mm and eα =
8.21± 0.28 ◦.

In Fig. 11 the individual errors are presented. At Nep =
200 the respective individual approximation error in tube
rotation is eα,1 = 3.39± 0.70 ◦, eα,2 = 6.17± 0.27 ◦,
and eα,3 = 2.29± 0.21 ◦, respectively. In terms of tube
translation, we achieve eβ,1 = 1.00± 0.17mm for the
innermost tube, eβ,2 = 2.00± 0.19mm for the middle tube,
and eβ,3 = 2.70± 0.78mm for the outer tube.

B. Discussion

The results show good generalization on the test set Stest.
This is achieved in a short training duration (Nes = 200)

Fig. 10. ReLU networks for the approximation of the inverse kinematics
evaluated at test set Stest. Course of the approximation errors eα and eβ
are the median over ten runs with different random initializations, error bars
show minimum and maximum, respectively.

and can be further improved. Preliminary tests indicated
that a longer training duration (e.g. Nes = 1000) have the
potential to reduce the position error by more than 10%.
Unfortunately, this comes to the cost of a considerably
increased training duration which prevented us from perform-
ing experiments in significant quantities.

Figure 11 shows that the influence of the individual eα,i
to eα are not equally distributed. Especially, eα,1 and eα,2
show the tendency to decrease with a longer training duration
while eα,3 is nearly saturated after Nes = 200.

As stated before we restricted the rotational angles αi
between −60 ◦ and 60 ◦ to limit the influence of the applied
tip load, which is caused by the mass of the attached sensor.
However, we assured that the investigated robot workspace
covers two quadrants. While the inverse kinematics trained
in [1] estimates a specific set of α angles for each tube
and for each quadrant of the Cartesian robot workspace, we
could show that a feedforward network is capable to solve
the kinematics directly without this kind of redundancy. Our



Fig. 11. The individual components eβ,i and eα,i of the respective
approximation errors. eβ,i is defined as absolute value abs(βi − β̂i),
whereas eα,i is defined in (13). The ribbons show the median, the maximum
and the minimum approximation errors for ten runs with different random
initializations. Please note the different scaling in y-axes.

preliminary examination in simulation shows that this is still
true for all four quadrants and for the entire joint space Q.

Same error source for the forward kinematics applies to
the inverse kinematics due to the fact that the same measured
data is used in the training set Stra. Furthermore, we did not
consider the Pythagorean trigonometric identity for the rotary
joint αi, which is given by

1 = cos2(αi) + sin2(αi) = γ21,i + γ22,i. (18)

Thus, (13) and, therefore, (11) produce an error because
it cannot be guaranteed that γ̂1,i and γ̂2,i are between −1
and 1, and are scaled equally. Note that if γ̂1,i and γ̂2,i
differ from γ1,i and γ2,i, respectively, by a scaling, then the
errors mentioned above would cancel out each other. The
incorporation of (18) can improve the approximation error
and is subject of future research.

For the sake of clarity, we do not compare our direct
solution for the inverse kinematics with other model-based
method due to the fact that the expected results are highly
depending on the model-based method itself and on the
chosen method, e.g. root finding. This can be carried out
systematically in future work.

VI. CONCLUSIONS
In this paper, we considered the problem of accurate

kinematics calculation of concentric tube continuum robots.
Neural networks and a novel joint representation have been
applied in order to approximate the forward and inverse
kinematics with measured experimental data from a robot
prototype with three tubes. No simplification has been made
regarding the degrees of freedom of the robot in three
dimensional task space. We achieved higher accuracy for
the forward kinematics compared to model-based approaches
and provide a direct solution for the inverse kinematics due to
the proposed transformation by trigonometric functions. We
are confident that with longer training and better parameters,
the approximation error can be further reduced, as first trials
showed. Moreover, we proposed an adjustment device in
order to find the zero point of the rotatory joints. This rapidly
allows the determination of common plane by observing the
robot’s backbone shape. To conclude, no accurate physics-
based model and no calibration of model parameters have to
be applied in order to achieve fast and accurate kinematics.
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