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Abstract— Concentric tube continuum robots utilize nested
tubes, which are subject to a set of inequalities. Current ap-
proaches to account for inequalities rely on branching methods
such as if-else statements. It can introduce discontinuities, may
result in a complicated decision tree, has a high wall-clock
time, and cannot be vectorized. This affects the behavior and
result of downstream methods in control, learning, workspace
estimation, and path planning, among others.

In this paper, we investigate a mapping to mitigate branching
methods. We derive a lower triangular transformation matrix
to disentangle the inequalities and provide proof for the unique
existence. It transforms the interdependent inequalities into
independent box constraints. Further investigations are made
for sampling, control, and workspace estimation. Approaches
utilizing the proposed mapping are at least 14 times faster (up
to 176 times faster), generate always valid joint configurations,
are more interpretable, and are easier to extend.

I. INTRODUCTION
A concentric tube continuum robot (CTCR) is composed

of several nested concentric tubes being pre-curved, and
super-elastic [1], [2]. The inherent compliant and flexible
nested tubes are translated and rotated with respect to each
other to change the manipulator’s shape. Different tube
materials can achieve this elastic interaction between tubes.
Such robots typically comprise two or three metal alloy
tubes, usually nitinol [3]. CTCR robot’s distinct feature lies
in the nonlinear dynamics resulting from the elastic interplay
between these tubes. On top of this, from a mechanical and
modeling point of view, the use of nested tubes imposes tube
length constraints formulated as a set of two inequalities.
Unfortunately, little attention is paid to mitigating the effects
of these inequalities.

Consider a CTCR with two tubes being subject to the
two inequalities 0 ≥ β1 ≥ β2 and 0 ≤ L1 + β1 ≤ L2 +
β2. As illustrated in Fig. 1, the translational joint space B
forms a parallelogram. Both inequalities span the edges of
the translational joint space B. From this observation, we can
use rotation, scaling, and shearing to obtain
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Fig. 1. Characteristics of the joint space of a 4dof CTCR with two nested
tubes. While tube rotations αi form a torus, therefore, can be represented as
square, the tube translations βi result in a parallelogram. This parallelogram
is bounded by the inequalities. Considering this geometric insight, it follows
that an affine transformation MB can be used to map a square U2 to the
parallelogram B. The geometric insight extends to N tubes, and it should
be clear that the transformed space, i.e., UN for N tubes, is more desirable.

We introduced this type of transformation in [4]. For learning
the kinematics of a CTCR task, we show in [4] that the
accuracy and convergence are significantly improved by
using this simple yet effective transformation to decorrelate
the joint space. As of now, this approach has been used
in publications [4], [5], [6] on machine learning. Yet, we
are confident that disentanglement will also be useful for
other research fields in the continuum robotics research
community. Furthermore, looking at applications beyond
CTCRs, the disentanglement of inequalities is also useful for
continuum robot types with variable lengths and cranes with
prismatic joints. For instance, a tendon-driven continuum
robot’s variable segments can be achieved using tubes [7].

More importantly, one or both inequalities are usually
neglected for approaches purely evaluated in simulation,
e.g., [8], [9], [10]. Observing the proliferation of prototypes
[11] poses a risk for translating the results on physical
hardware due to the need for considering both inequalities.
Furthermore, if both inequalities are considered, methods in
the literature rely on branching methods. Branching methods
such as if-statements can be implemented straightforwardly.
However, they can introduce discontinuities, have high wall-
clock time, and are poorly vectorizable. Consequently, meth-
ods and approaches using branching methods may not be
suitable for controlling, learning, optimization, workspace
estimation, and path planning. Especially computationally
expensive applications or applications considering small time
steps would suffer from a high wall-clock time.

In this paper, we expand on our previously proposed
affine transformation matrix [4], [5] by providing a proof
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for its uniqueness, discussing its theoretical foundation, and
showing its effectiveness in applications beyond learning,
i.e., sampling, workspace estimation for concentric tube
continuum robots, and control synthesis.

II. DISENTANGLEMENT OF BETA

In this section, we recap the affine transformation matrix
to disentangle the translational joint space as illustrated in
Fig. 1. While this transformation is proposed in our previous
work [4], [5], we present more theoretical insights and iden-
tify patterns by explicitly generalizing to N tubes. On top
of this, we prove the uniqueness of the affine transformation
and show that only one such mapping exists.

A. Affine Transformation Matrix

Due to the use of nested tubes, both inequalities given by

0 ≥ β1 ≥ β2 ≥ · · · ≥ βN and (1)
0 ≤L1 + β1 ≤ L2 + β2 ≤ · · · ≤ LN + βN , (2)

have to be satisfied by each translation βi. Here, the constant
Li is the length of the ith tube. The interdependencies caused
by (1) and (2) result from the fact that none of the distal ends
of inner tubes should be inserted inside the respective outer
tube. This can be derived both from a theoretical point of
view [12] and from a practical point of view, e.g., to avoid
play between adjacent tubes, which can cause hysteresis [13].
Furthermore, (1) can prevent collision between carriages,
while (2) can prevent collision between the outer tube and
gripper or attached sensors [5].

To avoid the evaluation of the inequalities (1) and (2),
the translations βi can be transformed such that the new
joint space representation βi,U are decorrelated. For the sake
of compactness, we summarize all N translations βi and
βi,U in a column matrix β and βU , respectively. For the
transformation β = MBβU , the mapping matrix given by

MB =




−L1 0 0 · · · 0
−L1 L1 − L2 0 · · · 0
−L1 L1 − L2 L2 − L3 · · · 0

...
...

...
. . .

...
−L1 L1 − L2 L2 − L3 · · · LN−1 − LN




(3)

is defined for N tubes and follows the used convention in
[5] and shown in Fig. 1, i.e., most inner tube i = N and
outermost tube i = 1. The determinant of (3) is

detMB = (−1)N L1

N∏

i=2

(Li − Li−1) . (4)

The factors of the product are the eigenvalues, and the sign
of the determinant changes depending on if N is odd or even.
More importantly, since 0 < Li−1 < Li, the inverse of (3)

always exists. The inverse of the lower triangular matrix is

M−1
B =




1

−L1
0 0 · · · 0

1

L2−L1

1

L1−L2
0 · · · 0

0
1

L3−L2

1

L2−L3
· · · 0

...
...

...
. . .

...

0 0 0 · · · 1

LN−1−LN




(5)

being a matrix with nonzero values in the lower diagonal
and main diagonal. By computing M−1

B β, all entries of βU
are in the interval [0, 1].

To enforce βi,U ∈ [−1, 1], the matrix (3) is scaled and
shifted. Removing the homogeneous extension leads to

β =

[
1

2
MB

1

2
MB · 1N×1

]
βU . (6)

Inverting the homogeneous extension of (6) leads to

βU =
[
2M−1

B −1N×1

]
β (7)

without the homogeneous extension, where all βi,U are
automatically scaled between −1 and 1 as well as unit-less
and orthogonal. The previously interdependent translational
parameters βi subject to (1) and (2) are now disentangled. In
fact, the inequalities become independent N box constraints,
i.e., −1 ≤ βi,U ≤ 1.

B. Considering Minimal Length

It is worth noting that Li is not necessarily the physical
length of the tube. We follow an approach that is similar
to the configuration approach in [14] and capture additional
mechanical constraints resulting from the actuation unit. This
gives the advantage that βi ∈ [βi,min, 0], where βi,min = −Li.
In order to consider a safety margin for sensors [5], the
minimum displacement denoted by βi,min can be further
restricted by considering a margin Li,margin. We can define

βi,min = −
(
Li −

N∑

k=i

Lk,margin

)
= −L∗

i (8)

as the minimum displacement, where the restriction is ap-
plied recursively. Afterwards, Li in (3) and (5) are substituted
by L∗

i = Li −
∑N

k=i Lk,margin to obtain MB∗ and M−1
B∗ ,

where the star notation indicates the consideration of L∗
i .

C. Uniqueness of the Low Triangular Transformation Matrix

Now, we illustrate the derivation of (3). The main idea is
to first independently select a value for βk of the kth tube.
Consequently, values for the adjoint tubes, i.e., (k−1)th tube
and (k + 1)th tube, depend on the chosen βk. This step is
repeated until the most inner and outermost tubes are reached
and all values are chosen. Consequently, for a given set of
N different tubes, it is possible to find N different starting
points for this approach and eventually N different affine



transformation matrices. However, only one of them satisfies
both inequalities (1) and (2), which is (3).

Starting with the outermost tube, we see the pattern

β1 = −L1β1,U (9)
β2 = β1 − (L2 − L1)β2,U = β1 + (L1 − L2)β2,U

...
βi = βi−1 + (Li−1 − Li)βi,U (10)

emerging, where βi,U ∈ U [0, 1] is a uniform distributed
random variable. Introducing β0 = 0 and L0 = 0, the first
sampling step (9) is considered in pattern (10), which can
be used as base case for an induction proof. Furthermore,
looking at the lower bound, i.e., βi,U ≥ 0, we can obtain a
short hand for the inequality (1) being βi ≤ βi−1. In addition,
considering the upper bound, i.e., βi,U ≤ 1, the pattern (10)
simplifies to βi ≤ βi−1 + (Li−1 − Li). After rearranging
leading to βi + Li ≤ βi−1 + Li−1, the other inequality (2)
can be distilled. The result shows that (10) considers both
inequalities, including the case for i = 0. Using induction,
the critical fact that the pattern (10) is always negative, i.e.,
βi ≤ 0, is reinforced as the base case (9) is negative and
Li−1 − Li ≤ 0.

Forward substitution is used to obtain MB. From (10), it
is clear that this leads to a lower triangular matrix, where
the entries of a column are either zero or the coefficient of
βi,U in (10). More importantly, the subsequently derived MB
given by (3) takes both inequalities (1) and (2) into account.

Now, we look into an alternative pattern. For this purpose,
one can start with the most inner tube, i.e., βN = −LNβN,U ,
as the base case. The emerging pattern is βi = βi+1+(Li+1−
Li)βi,U . This pattern leads to an upper triangular matrix.
Descending to i = 0, the pattern results in β1 = −L1β0,U ,
where β0,U is undefined. More critical, it is not ensured that
βi is always negative. To show this, we attempt a proof by
contradiction. Assuming the emerging pattern is positive, i.e.,
0 ≤ βi+1+(Li+1−Li)βi,U , for the i = N − 1 case, we get
0 ≤ βN + (LN −LN−1)βN,U . Rearranging and substituting
the base case, this yields βN,U ≤ (LN−LN−1)/LNβN−1,U .
Hence, the attempt fails, and a condition between the random
variables βN,U and βN−1,U exists, where βN can be positive.
Note that, for (10), this would lead to a contradiction since
the right side of (10) is always negative. Therefore, starting
with the inner tube does not lead to a valid mapping
respecting (1) and (2).

Considering a starting point between the most inner and
outermost tube, i.e., βk = −Lkβk,U for the kth tube with
1 < k < N , this would lead to two patterns – the ascending
pattern (10) and the faulty descending pattern. Hence, any of
the N−2 remaining matrices cannot guarantee that (1) holds.
In conclusion, MB is the only linear mapping that utilizes
the stated idea of successive selecting βk and considers both
inequalities.

III. APPLICATION TO JOINT SPACE SAMPLING

In this section, we compare and contrast four rejection
sampling methods with a sampling method utilizing the

mapping MB. For evaluation, we use a Monte Carlo method
to determine the distribution and aggregate each rejection
sampling method’s average time and success rate. A unit
distribution is used of each βi, where the three tubes lengths
are set to 100mm, 150mm, and 200mm.

A. Rejection Sampling via Branching

Rejection sampling is the most common approach to
sample βi subject to (1) and (2). All values of the kth sample
are sampled independently from a uniform distribution, i.e.,

β(k) ← diag (−Li)β
(k)
U (11)

where diag (−Li) is short for diag (−L1,−L2,−L3). After-
ward, both inequalities are checked for the kth sample, and,
if necessary, a resampling approach is applied. This step is
repeated until (1) and (2) hold.

To achieve a desired sample size, we consider four meth-
ods with different resampling approaches. If the kth sample
β(k) does not satisfy both inequalities (1) and (2), we
(a) re-sample all values,
(b) re-sample while keeping β1 = −L1β1,U ,
(c) re-sample while keeping β2 = −L2β2,U , or
(d) re-sample while keeping β3 = −L3β3,U .
The first approach, i.e., (a), is the most common variant in the
literature. The other methods can be considered as a special
case, where a specific joint value is preset.

B. Direct Sampling with Affine Transformation Matrix

Another approach is to map a sampled point βU from a
uniform cube U3 using MB. As proven in Sec. II-C, all
samples fulfill (1) and (2). For the kth sample, we can utilize

β(k) = MBβ
(k)
U (12)

to sample a valid joint values β
(k)
i using (3).

C. Evaluation and Results

Figure 2 shows the distribution of each sampling method
for 5000 samples. The sample population is collected by
running each method five times for 1000 samples. Table I
lists the wall-clock time and success rate. While a Matlab
script on a consumer PC is used to generate the data, the
relative increase of the wall-clock time is relevant for an
implementation-independent comparison.

The four sampling methods (a)-(d), branching – imple-
mented via if-else statement – and resampling – implemented
as a while loop – are used, causing larger wall-clock time
than the direct sampling method, which is at least two
magnitudes faster. On the contrary, our sampling method
using MB is a branchless approach and offers three main
advantages. First, the success rate is 100%. Second, the
execution is fast as it only relies on matrix multiplication
with complexity of O(N(N + 1)/2). Third, the wall-clock
time can be further improved by vectorizing (12), where all
samples can be computed in one step, which is impossible
with other sampling methods.



TABLE I
WALL-CLOCK TIME AND SUCCESS RATE FOR DIFFERENT SAMPLING

METHODS. THE STATED FACTOR IS THE NORMALIZED WALL-CLOCK

TIME W.R.T. THE DIRECT SAMPLING METHOD. BASED ON A MAXIMAL

RESAMPLING ATTEMPT OF 1000, THE FAIL RATE INDICATES HOW OFTEN

A SAMPLING METHOD FAILS TO CONVERGE TO A VALID SAMPLE W.R.T
ALL SUCCESSFUL SAMPLING ATTEMPTS. NOTE THAT THE COMPLEMENT

OF THE SUCCESS RATE IS THE RATE WITH WHICH THE SAMPLED VALUES

ARE NOT VALID AND MUST BE RESAMPLED.

method time in ms factor fail rate success rate

(a) 58.8± 3.6 14.1 N/A 8.4%
(b) 80.4± 3.7 19.3 0% 8.3%
(c) 189.1± 10.5 45.3 0.5% 3.2%
(d) 614.5± 81.3 147.3 5.5% 1%

MB 4.2± 0.3 1 N/A 100%

MB (vectorized) 0.3± 0.3 0.08 N/A 100%

Fig. 2. Distributions for different sampling method. The columns refer to
the respective sampled joint values βi, whereas the rows refer to the used
sampling method. The rejection sampling methods (a) to (d) are described
in Sec. III-A. The direct sampling using MB is described in Sec. III-B.

For the simple and most commonly used approach, the
success rate of the resampling approach (a) can be computed
directly. Using (4), success rate is equivalent to

|detMB|∏N
i=1 Li

=

N∏

i=2

Li − Li−1

Li
=

N∏

i=2

(
1− Li−1

Li

)
< 1, (13)

being the ratio of the volume. The theoretical value of
8.3% is consistent with the empirical result 8.4% listed
in Table I. From (13), each factor depends on the ratio of
adjacent tubes and is smaller than one. These facts reveal two
characteristics. First, the similar the lengths of the adjacent
tubes are, the lower the success rate. Second, the more nested
tubes, the lower the success rate. As a consequence, the lower
(13), the larger the wall-clock time.

Note the relation between (9) and the sampling method
(11) with (b). From that, it is no surprise that the unbiased
sampling method (a), sampling method (b), and the sam-

Fig. 3. Affecting of distribution on two-dimensional workspace of toy
examples. Two variables are randomly drawn from uniform distributions
and used afterward to generate the workspace for a square, a disk, and
a single-segment constant curvature continuum robot. Each workspace is
divided into two areas – (blue) vanilla approach and (green) proposed
approach. The blue sampled points are linearly transformed, whereas, for
the green sampled points, with the exception of the squared workspace, the
additional transformation (14) is used for the translational variable. As can
be seen from the realized distribution, the green sampled points yield a more
homogeneous distribution.

pling method using MB converges to similar distributions.
Looking into MB and the pattern (10) leading to (3), we
can see that βi is the weighted sum of i number of differ-
ent independent scaled uniform distributions. Therefore, the
distribution of each βi relates to an Irwin-Hall distribution
– also known as the uniform sum distribution – explaining
the characteristics of distributed joint values for the three
sampling methods. This effect is clearly noticeable with
a higher sample size, i.e., in [5], the distributions shows
a clear uniform, triangular, or bell-shaped distribution. By
contrast, the sampling methods (c) and (d) can result in a
U-shaped distribution. Note that the higher the value for
the maximum resampling attempt, see Table I, the more
pronounced the U-shaped distribution for β2 using (d). These
U-shaped characteristics can be seen in [15] too. Moreover,
the wall-clock time of (b) and (c) is significantly higher,
while the success rate is low. Further note that we added an
upper bound on the resampling attempts, see Table I, such
that (a), (b), and (c) terminate after a finite number of steps,
otherwise the wall-clock time would have increased further.
This directly translates to downstream methods that use a
resampling approach with preset joint values.

IV. APPLICATION TO WORKSPACE ESTIMATION

We will discuss an observation before applying our sam-
pling method to workspace estimation. The observation
relates to the sampling of two variables to cover an area.
After presenting a solution to the observation, we briefly
state a method to exploit rotational symmetries. Finally, this
section ends with a comparison of workspace estimation
given different sampling methods.

A. Translation and the Square Root Transformation

We start with toy examples as motivation. To cover an
area, two random variables are required. For the simple case
of a rectangle, sampling both independent dimensions with
uniform distribution results in expected distributed points
in the area. In contrast, when sampling a disk, the points
are undesirably distributed, see Fig. 3. Moreover, a planar
workspace of a continuum robot with constant curvature



Fig. 4. Convergence of workspace estimation in percent over the number
of samples. The top and bottom plot show the workspace estimation for
a CTCR with geometrical parameters stated in [5] and [15], respectively.
The solid lines are the median values being limited by the minimum and
maximum estimates. Ten different permutations of the ordered dataset are
used to compute the median, minimum, and maximum area. Note that a
new sampled point between two existing points at the boundary can reduce
the computed area by the triangular area spanned by those three points and,
therefore, the dashed 100% mark can be exceeded. Further note that the
workspace estimation using MB has a faster overall time of convergence.

kinematics and variable length is closely related to a circular
area. With no surprise, it shows a similar effect, see Fig. 3.

For the disk, one approach is to derive the Jacobian
determinant of the transformation between the Cartesian and
polar coordinate [16], [17]. This leads to a simple solution
for the disk, where the radius is determined by sampling its
square. Adapting this solution for βi,U related to the tube
length, this leads to

(βi,U )
2
= U [0, 1] . (14)

Afterward, the mapping (3) can be used. Note that, for
the disk, the angle is independent of the length variable.
However, this is not the case for the constant curvature. We
leave the proper sampling of the curvature for future work.

B. Workspace Estimation

To evaluate our proposed approach, we determine the
workspace of two CTCRs. We compare the sampling method
stated in (11) with the resampling approach (a), and (12).
Both sampling methods are used with and without (14).
For the former, β

(k)
U =

√
UN [0, 1] is used in place of

β
(k)
U = UN [0, 1]. To create each dataset, 125 000 tip po-

sitions are sampled for each sampling method and CTCR.
To compute the tip position, we use a static model [12] with
Poisson’s ratio of 0.3, Young’s Modulus of 50GPa, and the
geometrical parameters are stated in [15] and [5].

The sampled tip positions are mapped onto a plane via
as the workspace of the CTCR exhibits rotational symmetry.

TABLE II
AREA AND CLOSENESS OF SAMPLED WORKSPACES.

closeness

method
√
UN mean median1 area CTCR2

(a) ✗ 0.056± 0.237 0.052 0.0175 [5]
(a) ✓ 0.038± 0.195 0.032 0.0144 [5]

MB ✗ 0.056± 0.237 0.053 0.0171 [5]
MB ✓ 0.040± 0.200 0.034 0.0134 [5]

(a) ✗ 0.049± 0.221 0.045 0.0131 [15]
(a) ✓ 0.037± 0.193 0.032 0.0115 [15]

MB ✗ 0.049± 0.221 0.045 0.0131 [15]
MB ✓ 0.037± 0.192 0.032 0.0103 [15]

1 Median of the medians is computed instead of the median directly since
S = 125 000 samples require to compare S(S − 1)/2 distances,
which is too big – 58.2GB – to fit in the memory of our machine.

2 Reference to the parameters of the CTCR. For [15], the Robot 1 defined
in Table I is used.

This can be achieved either by plotting the distance between
a point and the symmetry axis against the symmetry axis, or
by rotation each point into a plane.1 Afterwards, a boundary
(boundary in MATLAB with shrink factor set to one) of the
set of points is found and the area (polyarea in MATLAB)
is computed. Figure 4 shows the results of the workspace
estimation. Table II lists the estimated area as well as
the closeness. The closeness is measured by the Euclidean
distance between all projected tip positions.

While the absolute value reported in Table II is less de-
scriptive, the relative differences between sampling methods
with and without (14) show that the mean and median
distance are smaller and less spread according to the standard
deviation. From this, it can be concluded that using (14) can
distributed the sampled tip position more evenly. However, at
the expense of a smaller estimated workspace. From Fig. 4,
the sampling method without (14) converges faster to the
final area at the expense of less homogeneous distributed
samples in the area. Moreover, as expected, (11) with (a) re-
sampling approach and (12) perform similarly. The exception
here is the workspace estimation, where (12) with (14) tends
to generate a smaller area.

V. APPLICATION TO CONTROL

In this section, we will incorporate MB to a control
application. This is motivated by the fact that a closed-loop
system with a simple control for βi can output values that
do not satisfy (1) and (2). This is possible even if all inputs
are valid desired βi,d. For the sake of simplicity, a first-order
proportional delay element (PT1) model and a PI controller
with KP,i and KI,i gains for the ith tube are used for the
closed-loop control. This leads to a simple linear and time-
invariant system. The block diagram is shown in Fig. 5.

A. Vanilla Approach

The vanilla approach treats each βi independently. There-
fore, the block diagram looks similar to the one shown in

1By rotating all tip positions onto one plane, we like to call this the
“Lantern method” as it reminds us of the opening and unfolding of a paper
lantern. This method [18], [19] is a simple yet useful simplification.



Fig. 5. Block diagram of the closed-loop system in state-space. The
system encased in blue represents is a simple PT1 model of the simplified
motor dynamics controlled by a PI controller. This system must account for
the two interdependent inequalities (1) and (2). By using MB , they become
independent box constraints that are easier to handle.

Fig. 5, where the additional transformation using MB is set
to the identity matrix. The matrices of the state equation are

A =

[
diag (−KP,i − 1) diag (KI,i)

−I3×3 03×3

]
(15)

and B = [diag (KP,i), I3×3]
⊤. The output equations are

given by C = [I3×3,03×3] and D = 03×3.

B. Transforming the State Space Representation

A rather novel approach utilizing (3) is to transform the
state space vector as shown in Figure 5. Using block diagram
algebra, the state equation changes to

Â = [diag (MB,MB)]A
[
diag

(
M−1

B ,M−1
B
)]

, (16)

where diag (MB,MB) and diag
(
M−1

B ,M−1
B
)

are
block diagonal matrices whose diagonal contains blocks
of MB and M−1

B , respectively. From (16), we get
MB diag (−KP,i − 1)M−1

B resulting in


−KP,1 − 1 0 0
KP,2 −KP,1 −KP,2 − 1 0
KP,2 −KP,1 KP,3 −KP,2 −KP,3 − 1


 , (17)

whereas the upper right block, i.e., MB diag (KI,i)M
−1
B , is




KI,1 0 0
KI,1 −KI,2 KI,2 0
KI,1 −KI,2 KI,2 −KI,3 KI,3


 . (18)

The matrices Ĉ = C and D̂ = D stay unchanged, while

B̂ =

[
MB diag (KP,i)M

−1
B

I3×3

]
(19)

is the transformed B, where MB diag (KP,i)M
−1
B has a

similar appearance to (17), only it negative and without ones.

C. Advantages

While inequalities (1) and (2) can be incorporated and
considered in an optimal control scheme, using MB, the
inequalities simplify to box constraints. Hence, the controller
to be synthesized can be more computationally efficient
compared to an optimal control scheme. In other words,
transforming the state space representation leads to a system,
which can be treated as a linear time-invariant system.
Therefore, a larger variety of methods are at the disposal of
the user. Furthermore, nonlinear elements such as saturation
and anti-windup elements can be integrated with ease.

Another benefit is the analysis of such transformed system,
which can be straightforward. For instance, for (16) of the
transformed system, we can see that the constraints

KP,i ≤ KP,i+1 and KI,i+1 ≤ KI,i (20)

for (17) and (18), respectively, are necessary otherwise the
system becomes a non-minimum phase system. Therefore, an
undesirable set of controller gains can make the closed-loop
system unstable. This insight gives rise to possible challenges
in control synthesis for CTCRs, when using a branching
method similar to Sec. III-A.

VI. DISCUSSION

Using MB has been shown benefical for machine leaning
application [4], [5], [6]. In this paper, we touch on the
application in control, workspace estimation, and, in a more
general sense, in sampling. While the results are preliminary,
they show promising future direction utilizing the advantage
of MB being the transformation of (1) and (2) to N box
constraints. This opens the possibility to use branchless
approaches offering several advantages. Among others, it
reduces the time spent on branch prediction, resulting in
faster execution. This is particularly beneficial for real-time
applications that require quick responses, such as control
systems. Additionally, in computational hungry applications
like tube design or online learning, where reducing time
is crucial to ensure efficient resource utilization. Another
benefit of utilizing MB is that it gives the possibility to shape
distributions to any desired distributions using the inverse
transform sampling.

We acknowledge that other representations and notations
exist. For example, in [20], [21], the translation is defined
by the segment length of overlapping tubes, i.e., li =
βi + Li − (βi−1 + Li−1) ≥ 0. This definition considers
only the manipulator side, i.e., (2), which has its merits
for algorithm in simulation. However, the algorithm applied
to real hardware must account for (1), which reflects the
actuation side. Moreover, li either needs to be measured
or related to βi, which does not solve the inequalities in
the first place. Furthermore, indexing starts either with the
outermost tube, e.g., [22], [23], [5], or with the most inner
tube, e.g., [24], [4]. We advocate using the former, showing
advantages in formalizing patterns, sequence, and proofs as
used in Sec. II-C. In any case, caution is advised when
comparing formulae and algorithms using different notations.
For example, the upper triangular matrix in [4] is the low
triangular matrix (3) and vise versa.

VII. CONCLUSIONS

In this paper, we investigate the affine transformation
matrix MB to mitigate the use of branching methods. Its
derivation and uniqueness are shown. Use of this transforma-
tion has ripple effects on downstream approaches previously
using sampling or branching. We explored the application
to sampling, workspace estimation, and control showing
advantages in success rates, lowering the computational load,
and interpretability of used methods.
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