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Abstract— We introduce a methodology to compute the
inverse kinematics for concentric tube continuum robots from
a desired shape as input. We demonstrate that it is possible
to accurately learn joint parameters using neural networks
for a discrete point-wise shape representation with different
discretization. In comparison to a vanilla numerical method,
the learning-based method is preferred in terms of accuracy in
joint space and computation. Representing the shape with up
to 20 equidistant points, a shape-to-joint inverse kinematics
with errors of 2.22◦ and 1.45mm is obtained. Further,
we extend the shape-to-joint inverse kinematics to image-to-
joint inverse kinematics utilizing multi-view images as shape
representation. This image-based method achieves errors of
6.02◦ and 2.76mm. Both approaches, i.e., shape-to-joint and
image-to-joint, result in higher accuracy compared to the
learning-based state-of-the-art approach which only considers
the tip pose.

I. INTRODUCTION

Concentric tube continuum robots (CTCR) are composed
of nested, pre-curved, and super-elastic tubes. The inherent
compliance and flexibility alongside a variety of achiev-
able motion profiles makes them well suited to operate in
confined and tortuous environments. Thanks to their small
scale, with typical diameters <2.5mm and overall length
of 200-300mm, CTCR show great potential for medical
applications, such as minimally invasive surgery [1].

A major challenge is modeling the forward kinematics
(FK) and inverse kinematics (IK). The highly non-linear
kinematics and numerous physical phenomena involved dur-
ing their motion, such as bending, torsion, shear, extension,
and friction, limit the achievable forward kinematics’ accu-
racy as well as computation time. The CTCR research com-
munity has converged to a physics-based kinetostatic model
for FK. By leveraging the Cosserat theory of elastic rods,
the shape of a CTCR can be determined from joint space
parameters by solving differential equations numerically [2],
[3]. Additional phenomena such as clearance and friction
[4], [5], material hysteresis [6], and snapping behaviour
[7] have been studied, but integration into a real-time FK
for general CTCR has not been achieved. To account for
unmodeled effects, online adaptive methods to continuously
update model parameters [8] or calibration techniques [9]
have been proposed.
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Fig. 1: Principle of our learning-based approaches.

IK has been addressed in terms of mapping from a
desired tip position or pose of a CTCR to joint parameters.
Closed-form, analytical solutions only exist for simple CTCR
composed of a stiffness-dominating tube pair [10] or for sim-
plified constant-curvature assumptions [11]. As no analytical
solutions exist for general CTCR, the IK relies on numerical
approximations [12] or differential inverse kinematics [2],
[13], [14], [15].

To overcome limitations of physics-based models,
learning-based approaches have been subject to recent re-
search [16], [17], [18], [19]. The idea of using neural network
to learn the FK leads to results outperforming the accuracy
of physics-based FK [17], [18]. For the IK, a feedforward
neural network (FNN) architecture has been proposed which
takes the desired pose as input [16], [17]. With data obtained
from a CTCR simulator, errors below 0.8mm and 0.1◦ in
tube translation and rotation could be achieved [16]. Using
data obtained with a physical robot prototype, an FNN can
achieve an error of 4.0mm and 8.3◦ for translation and
rotation, respectively [17]. Kuntz et al. [20] address learning-
based FK with CTCR shape information. They propose a
FNN to predict the coefficients of polynomial basis functions
as a shape representation from joint parameters as input. To
the best of our knowledge, the IK of a CTCR has not been
solved from desired shape as input thus far.

In this paper, we introduce a methodology to approximate
the IK for CTCR from shape using a learning-based ap-
proach. We demonstrate that it is possible to accurately learn
CTCR joint parameters using neural networks from shape
information. In particular, we represent a desired CTCR
shape by discrete curves and by multi-view images.
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TABLE I: CTCR tube parameters

Parameter Set of tubes

Term Symbol Unit Tube 1 Tube 2 Tube 3
(inner) (middle) (outer)

Length, overall L mm 220 165 110
Length, straight Ls mm 184 107 10
Curvature κx m−1 28 12.4 4.37
Diameter, outer Do mm 0.5 0.9 1.5
Diameter, inner Di mm 0.4 0.7 1.2
Young’s Modulus E GPa 50 50 50
Poisson’s ratio ν 1 0.3 0.3 0.3

II. CONCENTRIC TUBE CONTINUUM ROBOTS

In this paper, we consider typical CTCR with tubes of
total length Li with a straight segment of length Ls and a
curved segment of length Lc with constant precurvature κx.
In particular, we look at CTCR composed of n = 3 tubes,
with index i = 1 referring to the innermost and i = 3 to
the outermost tube. As illustrated in the Fig. 1, each tube is
actuated with two degrees of freedom (axial translation βi

and rotation αi) at its base. The joint values are subject to

αi ∈ [−π, π) (1)
βi ∈ [−Li, 0) (2)

β1 ≤ β2 ≤ β3 ≤ 0 (3)
0 ≤ L3 + β3 ≤ L2 + β2 ≤ L1 + β1 (4)

For a given set of joint values, the CTCR’s deployed length
is determined by L1 + β1 with its maximum at β1 = 0, i.e.,
the inner tube is fully extended. All tubes are free to rotate
with respect to each other; however, for translational motion,
the inequality constraints (3) and (4) are required to ensure
that each tube is always aligned with or extending from its
surrounding tube.

Using γ1,i = cos(αi) and γ2,i = sin(αi), the joint space
is represented as

q = [γ1,1, γ2,1, γ1,2, γ2,2, γ1,3, γ2,3, β1, β2, β3]. (5)

This representation has been proven to be advantageous for
learning-based approaches in [17], [18]. In the following, we
use a tube set as specified in Table I.

III. LEARNING-BASED SHAPE-TO-JOINT IK

Here, we investigate the problem of how to determine the
IK of a CTCR for a desired robot shape, referred to as shape-
to-joint (S2J) inverse kinematics or S2J-IK in short.

A. Problem Definition

We consider a discrete representation of the desired shape.
A shape S is described by m equidistant points pj =
[xj , yj , zj ]

⊤ w.r.t. the total robot length. The points are
ordered from the base to the tip and defined in a fixed
coordinate frame at the robot’s base as illustrated in Fig. 1.
As the first point p1 = [0, 0, 0]⊤ is constant, the remaining
m− 1 points from p2 to pm are relevant for the S2J-IK:

S = [x2, y2, z2, . . . , xm, ym, zm] ∈ R3(m−1) (6)

The desired output of our learning-based S2J-IK for any
given shape S are the corresponding joint values q ∈ R9.

B. Shape-to-Joint Feedforward Neural Network

We propose a shape-to-joint feedforward neural network
(S2J-FNN) consisting of fully connected layers with input
dimension of 3(m−1) and output dimension 9. For selecting
a network structure, we conduct a grid search of varying
numbers of hidden layers and neurons at each layer. The
grid search uses m = 20, 200 training epochs, and rectified
linear activation function (ReLU) activation functions in the
hidden layers. The selected structure in Table II is one hidden
layer deeper than the FNN used in [16], [17].

TABLE II: Neural Network Structure of S2J-FNN.

Layer Name Number of Neurons Activation Function

Input Layer 3(m− 1) None
FC1 1000 ReLU
FC2 500 ReLU
FC3 250 ReLU

Output Layer 9 Linear

In order to learn αi and βi simultaneously, we propose a
customized loss function that consists of two components.
The first component (7) is based on the cosine distance
between the estimation α̂i and real rotational angle αi, which
has a minimal value of zero when the two angles are aligned.

Di = 1− γ1,iγ̂1,i + γ2,iγ̂2,i√
γ2
1,i + γ2

2,i

√
γ̂2
1,i + γ̂2

2,i

∈ [0, 2] (7)

Using the cosine distance has the convenience of easily
addressing the predicted values of γ̂1,i and γ̂2,i that exceed
the range [−1, 1], considering this constraint is not enforced
during the model training. The second component is using
the common squared error for the translational component
multiplied by a scalar weight constant ω.

The two components are assembled to the loss function

L =

3∑
i=1

(
Di + ω

(
βi − β̂i

)2
)
. (8)

We determine ω using another grid search performed on an
FNN structure with two hidden layers (800 and 400 neurons),
trained for 200 epochs for m = 20. The results are shown
in Table III. Considering that βi are expressed in meters in
(8) such that their contribution is smaller than the rotational
part, magnifying it by a large factor is necessary. We choose
ω = 200 as the expected value of position and orientation
errors are approximately in the same scale. The grid search
results also show that (8) outperforms the commonly used
Root Mean Squares Loss (RMS) for the specific task we
investigate here.

C. Data Generation

The data set to train S2J-FNN is denoted Q1 in the fol-
lowing with size of 100 000 samples of q with αi ∈ [−π, π),
β1 ∈ [−154, 0], β2 ∈ [−115.5, 0], and β3 ∈ [−77.5, 0],



TABLE III: Grid search for ω. Errors eαi defined in (10) are
in degrees and eβi

defined in (11) are in millimeters.

ω eα1 eα2 eα3 eβ1
eβ2

eβ3

1 mean 4.90 3.72 1.62 1.21 5.32 3.39
median 3.81 2.22 0.90 0.94 4.61 2.59

10 mean 3.99 3.87 1.71 0.77 4.26 2.80
median 3.01 2.37 1.00 0.59 3.56 2.14

50 mean 3.78 3.86 1.75 0.58 3.11 2.24
median 2.91 2.34 1.09 0.44 2.51 1.65

100 mean 3.72 3.67 1.86 0.47 2.88 2.13
median 2.82 2.25 1.13 0.34 2.27 1.60

200 mean 3.70 3.46 1.64 0.42 2.41 1.86
median 2.86 2.11 0.94 0.31 1.90 1.35

400 mean 4.21 3.89 1.73 0.42 2.53 1.98
median 3.17 2.35 0.99 0.31 1.96 1.46

RMS mean 4.91 3.92 1.74 1.19 4.60 2.76
median 3.52 2.47 0.94 0.89 3.80 2.20

while satisfying the joint space constraints in (3) and (4).
We further enforce a minimum distance between the outer
and middle tube (β1 +L1)− (β2 +L2) > 25mm to ensure
that all shapes in Q1 are sufficiently distinguishable.

For each sample qk in Q1 we calculate the corresponding
shape Sk using the physic-based FK proposed by Rucker et
al. [3]. The set of all shapes is denoted as S1 hereafter.

D. S2J-FNN Training

The S2J-FNN is trained on data set {S1,Q1} with a
training set of size 80 000 and validation set of size 10 000.
The remaining 10 000 samples are used for testing. The
model is implemented in PyTorch [21] and, after a tuning
process, trained by Adam Optimizer [22] with a learning
rate λ = 10−4, decay rates 0.9 and 0.999, and mini batch
size of 64, for 1000 epochs. The Xavier initialization [23] is
used to initialize S2J-FNN weights. The models are trained
with different values of m ranging from 2 to 20. After the
training phase, the S2J-FNN performance is evaluated with
the testing set.

E. Evaluation

The estimated rotational angles α̂i and αi are determined
using atan2 leading to

α̂i = atan2 (γ̂2,i, γ̂1,i) and αi = atan2 (γ2,i, γ1,i) . (9)

For each tube, the estimation errors are evaluated in degrees
for rotation and in millimeters for translation. We also adapt
the definitions from [17] for total errors, defined as following.

eαi
= |αi − α̂i| (10)

eβi
=

∣∣∣βi − β̂i

∣∣∣ (11)

eα =
√

e2α1
+ e2α2

+ e2α3
(12)

eβ =
√
e2β1

+ e2β2
+ e2β3

(13)

We further explore the relationship between joint pa-
rameter estimation error and shape. Since the joint space
constraints in (1)-(4) are not enforced during the training

process, some outputs q̂k are not valid. For the outputs q̂k
from S2J-FNN that satisfy (1)-(4), we determine the shape
Ŝk for the estimated joint parameters q̂k using the physics-
based FK model [3] with m = 20. This reconstructed shape
p̂j = [x̂j , ŷj , ẑj ]

⊤ of Ŝk is then compared to the ground
truth values pj = [xj , yj , zj ]

⊤ of Sk. Both, absolute error
in millimeter and relative error in percentage of the robot
length sj are calculated by

eabs
j =

√
(xj − x̂j)2 + (yj − ŷj)2 + (zj − ẑj)2 (14)

erel
j = eabs

j /sj (15)

The average value of eabs
j and erel

j averaged from j = 2 to
j = 20 are reported, along with eabs

20 and erel
20, which are the

errors specifically at the CTCR tip.

F. Results

The performance is evaluated for values of m from 2 to
20 summarized in Fig. 2. As we can see from Fig. 2a and
Fig. 2b, the errors in joint space eαi

and eβi
are significant

for m < 5, and remains constant with more input points. A
similar trend can be observed for the average absolute and
relative reconstruction errors in Fig. 2c and Fig. 2d. With
m = 20, the median eαi are 1.13◦, 1.01◦, 0.62◦, and median
eβi are 0.39mm, 0.82mm, 0.72mm, for i = 1, 2, 3. Fig. 3
shows violin plots of the error distributions for eαi

and eβi

for values of m from 2 to 20.
Also, for all values of m, the percentage of valid esti-

mations is constantly higher than 95%. This indicates that
our S2J-FNN is able to learn the constraints of the CTCR
joint space in most cases, without specifically enforcing these
during training. In terms of the estimation time, the average
computing time is 0.40 s for 10 000 samples in the test set
running on a GeForce RTX 2080 Ti.

IV. NUMERICAL SHAPE-TO-JOINT IK

To compare the performance of our learning-based method
with the state-of-the-art, we implement a vanilla numerical
S2J-IK.

A. Algorithm Description

As for the learning-based method, we consider equidistant
points along the robot’s length (see Sec. III-A). These m
discrete points pj represent the desired target shape and serve
as an input to the numerical approach to S2J-IK. Based on
this target shape a numerical nonlinear optimization routine
is implemented to find joint values q that correspond to the
discretely defined target shape. This numerical method aims
to minimize the squared residual in the shape error between
the discrete target shape pj and p̂j , computed by the FK [3]
for the joint values q, using the same number of m equally
distributed points:

min
q

m∑
j=2

||pj − p̂j ||22 . (16)

At the same time, the constraints on q in (1)-(4) have to be
respected. To solve this constrained nonlinear optimization
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Fig. 2: Median and average joint space and reconstruction errors for S2J-IK. L-IK for learning-based S2J-FNN method and
N-IK for numerical IK method.

Fig. 3: Violin plots for error distributions over the number of points m for S2J-IK. L-IK for learning-based S2J-FNN method
and N-IK for numerical IK method. Errors eαi

and eβi
are in degrees and in millimeters, respectively.

problem, a derivative-free algorithm based on linear approx-
imations as proposed in [24] is used. The choice of an initial
guess qinit highly affects the performance and convergence of
the numerical S2J-IK. To improve the convergence behavior,
we run the optimization problem expressed in (16) with 27
different initial guesses and pick the resulting joint values
with the lowest remaining residuals. The considered 27
initial guesses use the same values for βi, so that each
tube is approximately retracted by half its length. For the
rotation of each tube, we consider three different values
αi ∈ {−2π/3, 0, 2π/3}, distributing them equally in their
valid ranges.

B. Results

The numerical approach for S2J-IK is implemented in C++
using the open-source library [25] and is executed using an
Intel Core i5-3470 processor with 4 cores at 3.20GHz. Its
computing time per sample is between 2 s to 3 s.

The approach is evaluated with values of m from 2 to
20. For each m, 100 different qtarget are selected from the
test set used for learning-based S2J-IK in Sec. III. The
performance is measured by the errors in joint space and
task space, as defined in Sec. III-E. The results are shown
in Fig. 2 alongside the errors of the learning-based S2J-IK.
With m = 20, the median eαi are 13.10◦, 9.13◦, 4.55◦, and
median eβi

are 0.14mm, 4.83mm, 2.66mm, for i = 1, 2, 3.

From the error distributions in Fig. 3 we can observe wider
spreads for N-IK for larger m.

C. Comparison S2J N-IK and L-IK

For both learning-based and numerical S2J-IK, we can
see that with m = 2, which only considers the tip, the
joint space errors are high as shown in Fig. 2a and Fig. 2b.
As m increases, the errors decrease and remain relatively
constant for m ≥ 10. In general, one can observe that
eα3

< eα2
< eα1

and eβ1
< eβ3

< eβ2
for a given m. With

an exception for eβ1
, the learning-based S2J-IK has lower

eαi
and eβi

for m ≥ 4. More importantly, by examining
the error distributions shown in Fig. 3, the learning-based
S2J-IK is in general more accurate in terms of the median
value and width of the distribution. However, while both
S2J-IK approaches generate more than 95% valid joint
configurations, the numerical S2J-IK outperforms learning-
based S2J-IK by 2% to 5%. Nevertheless, the learning-based
S2J-IK is faster to compute.

Regarding the discretization of the shape with equidistant
points, errors in the joint space shown in Fig. 2 and the
reconstruction errors shown in Fig. 3 converge to relatively
constant values for m ≥ 10. Especially, the appearances of
the error distributions remain similar as shown in Fig. 3.



V. IMAGE-BASED SHAPE-TO-JOINT IK

Our second approach is to learning-based IK from shape
information uses multiple-view images of a CTCR. We refer
to this mapping as image-to-joint inverse kinematics (I2J-
IK).

A. Problem Definition

We use a triplet of 3 grey scale images Vk =
{vk1, vk2, vk3} as input. Each image is obtained from a
camera fixed in location relative to a base frame and the
desired shape is completely depicted in the image. The
number of views is chosen to be 3 to avoid possible self-
occlusions. The desired output of the I2J-IK for a given
triplet Vk is q ∈ R9.

B. I2J-CNN Structure

We exploit convolutional layers for processing images
from different view points as input. We choose a resolution
of 500×500. It is composed of 3 parallel convolutional parts,
consisting of convolutional layers and average pooling layers;
each part takes images from a fixed view point for input and
abstracts relevant features. The outputs from 3 convolutional
parts are then concatenated and fed to 2 fully connected
layers. The resulted convoluational neural network is called
I2J-CNN and its structure is listed in Table IV.

TABLE IV: I2J-CNN structure

Layer Name Characteristic
Input Layer, input dimension (500, 500, 3)

Convolutional layer with 4 filters, kernel size (2, 2), stride (1,1)
Average pooling layer with kernel size (2, 2), stride=2

Convolutional Conv2, 2 filters with kernel size (2, 2), stride (1,1)
part × 3 Average pooling layer with kernel size (2, 2)

Convolutional layer with 4 filters, kernel size (2, 2), stride (1,1)
Average pooling layer with kernel size (2, 2)

Flatten layer with 29 768 neurons
Concatenation 89 304 Neurons

FC1 600 Neurons with ReLU activation function
FC2 300 Neurons with ReLU activation function

Output Layer 9 Neurons with linear activation function

C. Data Generation

Following similar procedure as for S2J-FNN in Sec. III,
a data set of size 100 000 with q is generated and referred
to as Q2. Joint values q have identical joint ranges except
for αi ∈ [−π/3, π/3]. To generate images, we utilize our
CTCR 3d simulation environment using the Visualization
Toolkit (Kitware, Inc., New York, USA). For each qk in Q2

the CTCR is rendered and a triplet of grey scale images
Vk is generated from three different but fixed virtual camera
locations. The collection of Vk is denoted as V2.

D. I2J-CNN Training

The I2J-CNN is evaluated on the data set {V2,Q2} with
ratio 8:1:1 for training, validation, and testing. I2J-CNN is
implemented in Pytorch 1.4.0 trained by Adam Optimizer at
learning rate λ = 10−4, decay rates 0.9 and 0.999, and mini
batch size of 50, for 100 epochs. The loss function (8) with
ω = 200 is used. This process is repeated for 3 trials with
different weight initialization.

E. Evaluation

The estimation errors of I2J-CNN are evaluated both in
joint and Cartesian space using eαi

and eβi
as defined in

(10) and (11). We also determine the reconstruction error as
outlined in Sec. III-E.

F. Results

Figure 4 shows the error distributions for I2J-CNN trial
1. The median errors are eα1

= 2.87◦, eα2
= 2.04◦, eα3

=
0.77◦, eβ1

= 1.71mm, eβ2
= 1.23mm, and eβ3

= 0.88mm.
All results are summarized in Table V.

Fig. 4: Estimation error distributions of I2J-CNN for trial 1.
For the sake of visualization, the distributions are truncated
and, therefore, a few outliers are omitted.

Following the same steps as stated in Sec. III, 28 054 out
of 30 000 (93.51%) predictions of q̂ in the testing stage
are valid in the joint space. Their corresponding shapes
are reconstructed and, afterwards, eabs

j as well as erel
j are

computed. Across all the points, the average errors are
0.72mm which is 0.75% w.r.t. the corresponding robot
length. Whereas the average error at the robot tip is 2.18mm
which is 1.59% w.r.t. the robot length.

VI. DISCUSSION

The performances of both learning-based approaches, i.e.
S2J-FNN and I2J-CNN, are summarized in Table V. From
the inner tube i = 1 to the outer tube i = 3, the rotational
error eαi

increases, for both S2J-FNN and I2J-CNN. This
trend confirms that the outer tube has a larger influence on
the overall shape of a CTCR, as it is the stiffest.

For comparison we include the results of our previous
work in Table V, where we propose the tip-to-joint T2J-
FNN inverse kinematics mapping [17]. The results of our
S2J-FNN with m = 20 outperform the T2J-FNN by reducing
the rotational error by 5.99mm and the translational error by
2.55◦. This shows that by considering the whole shape rather
than only the tip position, the relationship between shape and



TABLE V: Estimation errors for joints parameters per trial for S2J-FNN (m = 10, 15, 20) and I2J-CNN in comparison to
tip-to-joint (T2J-FNN) results from [17]. Median values for eαi

and eβi
are reported for both models, as well as averages

of 3 trials for I2J-CNN.

S2J-FNN evaluation trials I2J-CNN evaluation trials T2J-FNN [17]

Estimation Errors Unit m = 10 m = 15 m = 20 1st 2nd 3rd Avg Average error over 10 trials

eα1 degree 1.43 1.55 1.13 2.87 2.91 3.32 4.02 3.39± 0.70
eα2 degree 1.18 1.52 1.01 2.04 2.07 2.16 3.14 6.17± 0.27
eα3 degree 0.63 0.82 0.62 0.77 0.72 0.99 1.19 2.29± 0.21

eα degree 2.56 3.09 2.22 4.60 4.65 5.24 6.02 8.21± 0.28

eβ1
mm 0.29 0.28 0.39 1.71 0.81 1.00 1.32 1.00± 0.17

eβ2
mm 1.03 1.20 0.82 1.23 1.19 1.62 1.62 2.00± 0.19

eβ3
mm 0.75 0.93 0.72 0.88 1.00 1.05 1.20 2.70± 0.78

eβ mm 1.61 1.90 1.45 2.73 2.28 2.74 2.76 4.00± 0.60

joint space is more unique and suitable for learning-based
methods. Our results also suggest that a CTCR shape can be
uniquely represented by 10 or more equidistant points along
the shape. Also, notably numerical S2J method achieves
smaller errors at the tip with m < 10. This indicates that
a numerical IK method is preferable for target shape defined
by few points. For future work, leveraging the learning-based
S2J-IK as a prior for the physic-based S2J-IK is desirable
unifying the strengths of both approaches.

With simulated data, our proposed approaches also out-
perform related work in terms of reconstruction errors. For
our S2J-FNN (m = 20) the average reconstruction error of
0.35mm and maximum reconstruction error eabs

j of 1.27mm
for the CTCR tip is lower than the learning-based joint-
to-shape reconstruction error obtained in [20]. In terms of
relative error, the average reconstruction error is 0.40%
and a maximum relative error erel

j of 0.95% are obtained
for the tip. These results are lower than the 3% error of
the physics-based FK [3] which is most widely used for
CTCR. Therefore, we suspect that our methodology may also
perform well with a data set of a real CTCR prototype.

There is no canonical choice for the representation of
a shape, due to the continuously elastic deformation of
the CTCR shape. Existing representations rely on model
assumptions and simplifications, e.g. constant-curvature as-
sumption. A discrete representation depends on the number
of equidistant points along the shape as shown in Fig. 3
and Fig. 2. A tendency can be observed: the higher the
number, the higher the accuracy. Note, that the accuracy
not only depends on the number of points, but also on their
position and the underlying model [26]. Shape representation
based on images, on the other hand, can be considered as
a representation with less simplifications, as the continuous
curve and all points along the shape can be theoretically
captured. As a side note, the output of the convolution layer
before the fully connected layer can be interpreted as a shape
representation as well, since convolution layers act as an
encoder reducing dimensionality of an input image.

One inherent limitation of a learning-based approach for
the S2J-IK is that it relies on large amounts of data of
known CTCR shapes. A pre-trained S2J-FNN or I2J-FNN
with simulation data may be used as a starting point for

transfer learning with a real CTCR prototype to reduce the
required amount of real data. In this case with real CTCR
data available, a learning-based approach has the potential to
address unmodeled effects in the selected FK model for the
numerical method and may result in improved accuracy.

VII. CONCLUSION

In this paper, we describe the shape-to-joint inverse
kinematics for CTCR and propose two learning-based ap-
proaches. The feasibility is demonstrated in simulation. Two
approaches are used to describe the shape of a concentric
tube continuum robot; as a set of equidistant points along
the shape and as an image from different view points. The
former approach is compared with a numerical IK approach
and shows higher accuracy for different discretization. The
latter achieves promising results while bypassing the choice
of discretization.

Effectively solving the inverse kinematics for shape input
is an important prerequisite for effective open-loop and
closed-loop control [27]. Compared to tip position or pose
control, we believe that shape-to-joint inverse kinematics
and the proposed approaches can enable more advanced
controllers and applications.
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