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Abstract— In this paper, we propose a dynamic model
and control framework for tendon-driven continuum robots
with multiple segments and an arbitrary number of tendons
per segment. Our approach leverages the Clarke transform,
the Euler-Lagrange formalism, and the piecewise constant
curvature assumption to formulate a dynamic model on a
two-dimensional manifold embedded in the joint space that
inherently satisfies tendon constraints. We present linear con-
trollers that operate directly on this manifold, along with
practical methods for preventing negative tendon forces without
compromising control fidelity. We validate these approaches in
simulation and on a physical prototype with one segment and
five tendons, demonstrating accurate dynamic behavior and
robust trajectory tracking under real-time conditions.

I. INTRODUCTION

A tendon-driven continuum robot (TDCR) consists of
an elastic backbone with tendons routed along its length
to transmit actuation forces from an external unit to the
compliant structure [1]. Spacer disks guide the tendons along
the backbone, terminating at end disks to define segments
as shown in Fig. 1. Pulling the tendons generates bending
motions, with the segment tip moving in a curved plane
with two degrees of freedom (DoF) [2]. Stacking multiple
segments extends the robot’s positioning capabilities beyond
this plane.

Most TDCR designs are limited to four tendons per
segment, as this allows simplifications of tendon constraints
and forward robot-dependent kinematics [3], [4]. However,
using more tendons reduces the maximum tendon load [5],
improving force distribution, absorption, and delivery. Addi-
tional tendons also increase stiffness [6] and enhance safety
due to redundancy.

A. Related Work

Dynamic models are essential, as they provide a way
to simulate robots as well as to develop robot designs
and control schemes. For TDCRs, Cosserat rod models are
widely used in dynamic modeling due to their accuracy
in large deformation analyses [8]. These models, which
couple the backbone and tendons, result in a set of partial
differential equations (PDEs). However, restrictive time step
conditions limit real-time applications in simulation and
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Fig. 1. TDCR prototype with one segment and five tendons. Each tendon
is driven by a backdrivable actuation unit, which is controlled by a micro-
controller [7]. The robot is controlled by linear controllers as described in
this work.

control [9]. Therefore, maintaining computational efficiency
while preserving model realism is challenging [10].

A numerical framework for solving Cosserat-based for-
ward dynamics in continuum robots (CRs) is introduced
in [11], where implicit differentiation transforms the PDEs
into a set of ordinary differential equations (ODEs) in the
spatial domain, solved via numerical integration and shoot-
ing methods. While applicable to various CRs, including
TDCRs [12], experimental validation only demonstrates soft
real-time for systems with a limited number of DoF. To
improve computational efficiency, [13] proposes a piecewise
constant strain discretization approach, accounting for shear
and torsional deformations, which are crucial for handling
out-of-plane external loads. This is extended in [14] to a
variable-strain model, formulating the dynamics as a minimal
set of ODEs in matrix form. Although strain-based models
are particularly suitable for control purposes, Cosserat-based
models require extensive modeling states and remain com-
putationally expensive [8].

An inverse dynamic model for a pneumatically actuated
CR with multiple sections is derived by [15] using the Euler-
Lagrange formalism and the piecewise constant curvature
(PCC) assumption. A similar approach is implemented for
inverse dynamics of TDCRs in arc space, both for one-
segment [16] and multi-segment robots [17]. These models



leverage symbolic precomputation of the dynamic equations,
ensuring computational efficiency for real-time simulations
and control. However, most used arc space parametrization
introduces kinematic singularities [18]. To address singulari-
ties in arc space, [18] introduces an improved parametrization
for a CR with four actuators. Similarly, [19]–[21] propose
improved representations for robots with three or four actu-
ators per segment.

In [22], the Clarke transform is introduced to disentangle
tendon constraints and utilize a two-dimensional manifold
embedded in the joint space. It offers the potential to develop
approaches directly on the manifold that ensure intrinsic
tendon constraint compliance, i.e., the sum of all tendon
displacements is zero. The derived Clarke coordinates [22]
unify previous parametrizations [18]–[21] and extend their
applicability to robots with n ≥ 3 symmetrically arranged
tendons. This generalization offers a robot-type-agnostic
framework that integrates the benefits of previous methods
and applies to various CRs, including TDCRs, enhancing the
consistency and generality of these approaches.

B. Contribution

This work addresses the limited exploration of TDCR
designs and control strategies using a larger number of
actuators per segment, which has been limited by the lack of
analytical solutions for forward robot-dependent mappings.
We propose a computationally efficient dynamic model for
TDCRs with multiple segments and n tendons per segment,
based on the Euler-Lagrange formalism and the PCC as-
sumption. By leveraging the Clarke transform [22], the dy-
namic model is reformulated on a 2DoF manifold embedded
in the joint space, simplifying its representation and enabling
efficient simulations. Additionally, this enables the control
of an entire segment using only two control parameters. We
utilize linear controllers, validating them in simulation and
on a physical TDCR with one segment and five tendons, as
shown in Fig. 1.

In particular, the main contributions are:
• utilizing the Clarke transform in a generalized dynamic

model of a TDCR with multiple segments and n tendons
per segment based on the Euler-Lagrange formalism and
the PCC assumption,

• implementation of linear PID and PD control for a
TDCR with n tendons per segment on the 2DoF man-
ifold within the joint space

• validation of the dynamic model and control schemes
through simulations and experiments.

II. DYNAMIC MODEL

In the following, we derive the dynamic model using the
Euler-Lagrange formalism and Clarke transform. For this, we
assume PCC [4] and fully constrained tendon path [3].

A. Kinematic Model

As shown in Fig. 2, the kinematics of a TDCR is divided
into two mappings: the robot-independent mapping find

Fig. 2. Mappings between kinematic spaces of a TDCR. The robot-
independent mapping is denoted by f ind, while the robot-dependent map-
ping is given by fdep = fM,I ◦ fM,II. The mappings from joint space to
its manifold and from manifold to arc space are represented by fM,I and
fM,II, respectively. All inverse mappings are indicated by f−1.

describing the relationship between arc parameters and task-
space coordinates, and the robot-dependent mapping fdep
capturing the transformation between tendon displacements
and arc parameters. Note that the arc space is often referred
to as configuration space [4]. The robot-independent map-
ping find is well-established in the literature and has been
addressed using various approaches [3], [4], whereas the
approach proposed in [22] provides a generalized closed-
form solution for the robot-dependent mapping fdep.

Consider a TDCR with m segments and n tendons per
segment where the joint space of segment i is defined by the
tendon displacements qi = [qi1, qi2, . . . , qin]

⊤ ∈ Rn, subject
to the tendon constraint

n∑
j=1

qij = 0. (1)

The tendons run through guide holes arranged on the spacer
disks, which are evenly distributed on a circle with radius
rd. Note that we assume no slack in the tendons. The Clarke
transform disentangles this constraint, providing a linear
mapping between the joint space and a two-dimensional
manifold embedded within it. The two variables qMi

=
[qRe,i, qIm,i]

⊤ ∈ R2 of the manifold are called Clarke
coordinates [22].

This forward mapping fM,I can be expressed as[
qRe,i

qIm,i

]
= MPqi, (2)

with a generalized Clarke transformation matrix [22]
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Moreover, the inverse mapping f−1
M,I results in
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P
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]
, (4)

with a generalized inverse Clarke transformation matrix [22]

M−1
P =



cos (0) sin (0)

cos

(
2π

1

n

)
sin

(
2π

1

n

)
...

...

cos

(
2π
n− 1

n

)
sin

(
2π
n− 1

n

)


. (5)



Fig. 3. Physical interpretation of the Clarke coordinates. The blue line lies
within the bending plane. The length difference to the arc length is the virtual
displacement. The virtual displacement is equal to

√
q2Re + q2Im = θrd.

The orange arrows lie within the respective projected plane corresponding
to the xz-plane and yz-plane of the base. The virtual displacement can be
projected onto the respective plane, resulting in the respective projected
virtual displacement. The corresponding arc parameters θ and ϕ are also
shown.

The notation for the inverse Clarke transformation matrix
follows [22], where ()−1 refers to the inverse transformation,
not the matrix inverse of MP .

The forward mapping fM,II transforms the Clarke coor-
dinates into arc space parameters. It leads to

ϕi = arctan2(qIm,i, qRe,i), and (6)

θi =
1

rd

√
q2Re,i + q2Im,i, (7)

where θi is the segment’s bending angle and ϕi the segment’s
bending direction, see Fig. 3. The inverse mapping f−1

M,II can
be stated as [

qRe,i

qIm,i

]
= θird

[
cos(ϕi)
sin(ϕi)

]
. (8)

The physical interpretation of the Clarke coordinates and
the corresponding arc parameters are shown in Fig. 3.
By combining the forward and inverse mappings between
joint space, manifold, and arc space, a generalized closed-
form solution is obtained for the robot-dependent mapping,
applicable to an arbitrary number of tendons per segment.

B. Kinetic Energies

The total kinetic energy of the TDCR is given by

T = Tb + Tt1 + Tt2 + Td. (9)

Each component is derived below.
Firstly, the kinetic energy of the backbone comprises

translational and rotational components along the segments

Tb =
1

2

m∑
i=1

[ ℓi∫
0

(
(0)ẋ

2
si + (0)ẏ

2
si + (0)ż

2
si

)
ρbAb dsi+

ℓi∫
0

ω⊤
siIbωsiρb dsi

]
,

(10)

where ρb is the material density of the backbone, Ab

represents the cross-sectional area of the backbone and
Ib denotes the tensor of the area moments of inertia of
the backbone. Note that (0)ẋsi , (0)ẏsi , (0)żsi are the time
derivatives of the cartesian coordinates of a point psi on the
backbone’s segment with length ℓi. They are expressed with
the basis coordinate frame, denoted by the subscript 0, which
corresponds to the coordinate frame of the most proximal
segment. The coordinate frame of a segment is shown in
Fig. 3. The angular velocities of a point on the segment’s
backbone ωsi = [ωxsi

, ωysi
, ωzsi

]⊤ can be calculated with
the skew-symmetric angular-velocity matrix [23].

Secondly, a similar expression can be found for the
tendons

Tt1 =
n

2

m∑
i=1

i∑
j=1

[ ℓj∫
0

(
(0)ẋ

2
sj + (0)ẏ

2
sj + (0)ż

2
sj

)
ρtAt dsj+

ℓi∫
0

ω⊤
sjItωsjρt dsj

]
,

(11)

where subscript t refers to the parameters of the tendons.
Note that the entire length of the tendons must be taken into
account, as the tendons of the distal segments are also routed
through the proximal segments.

The change of tendon displacements causes a further
component of the kinetic energy

Tt2 =

m∑
i=1

n∑
k=1

1

2
mtq̇

2
i,k, (12)

with the change of tendon displacement over time of the
tendons of segment i

q̇i =
d

dt

i∑
j=1

M−1
P

[
qRe,j

qIm,j

]
, (13)

with i = 1, . . . ,m. Parameter mt denotes the mass of the
tendons.

Thirdly, each spacer disk is fixed perpendicularly to the
backbone. The kinetic energy of all spacer disks can be
determined as

Td =
1

2

m∑
i=1

[
Di∑
o=1

(
(0)ẋ

2
do

+ (0)ẏ
2
do

+ (0)ż
2
do

)
md+

Di∑
o=1

ω⊤
do
Idωdo

]
,

(14)

where subscript d indicates the parameters of a spacer disk.
The linear and angular velocities of each spacer disks can
be derived by substituting si = o · hi for o = 1, 2, . . . , Di

with the total number of spacer disks of the i-th segment
Di = ℓi/hi and the distance between each spacer disk hi.



C. Potential Energies

The total potential energy can be expressed as

U = Ug,b + Ug,t + Ug,d + Ue,b. (15)

The four contributions to U are defined in the following.
Firstly, supposing that the direction of the +z-axis of the

TDCR’s base coordinate frame coincides with the direction
of the gravitational vector with acceleration g, the gravita-
tional potential energy of the backbone can be represented
by

Ug,b =

m∑
i=1

ℓi∫
0

(0)zsiρbAbg dsi. (16)

The gravitational potential energy of the tendons is given by

Ug,t = n

m∑
i=1

i∑
j=1

ℓj∫
0

(0)zsjρtAtg dsj , (17)

whereas the potential energy of all spacer disks is given by

Ug,d =

m∑
i=1

Di∑
o=1

(0)zdo
mdg. (18)

Secondly, according to the Euler-Bernoulli beam the-
ory [24], the elastic potential energy is

Ue,b =

m∑
i=1

ℓi∫
0

((
EbIb,zz

2
+ n

EtIt,zz
2

)(
dθsi
dsi

)2
)

dsi

=

m∑
i=1

[
EbIb,zz
2ℓi

θ2i + n
EtIt,zz
2ℓi

θ2i

]
,

(19)

where Ib,zz and It,zz denotes the area second moments about
the segments’ z-axis.

D. Damping Forces

To account for energy dissipation, we introduce damping
into the dynamic model. Assuming homogeneous material
properties for the backbone, we employ a linear damping
model analogous to [25].

The damping model for segment i in arc space results in

Da,i =

[
dθ,iθ

2
i 0

0 dθ,i

]
, (20)

with the damping coefficient dθ,i. The damping matrix
Da ∈ R2m×2m of the entire TDCR are block diagonal
concatenations of Da,i.

E. Equation of Motion

We can state the TDCR’s equation of motion using the
Euler-Lagrange formalism

d

dt

(
∂T

∂ȧ

)
− ∂T

∂a
+
∂U

∂a
= τ a, (21)

where a = [ϕ1, θ1, . . . , ϕm, θm]⊤ ∈ R2m represents the
TDCRs arc space parameters and ȧ ∈ R2m and ä ∈ R2m

their first and second time derivatives. We first derived the
dynamic equations in arc space and mapped them onto the
manifold, as described in the following. Note that one might
define the energies on the manifold using (6), (7), and their
time derivatives.

The equation of motion in arc space notation with damping
forces results in

Ma(a)ä+Ca(a, ȧ)ȧ+ga(a)+Kaa+Da(a)ȧ = τ a (22)

where Ma ∈ R2m×2m is the mass matrix, Ca(a, ȧ) ∈
R2m×2m contains the Coriolis and centrifugal expressions,
ga(a) ∈ R2m represents the gravitational forces and Ka ∈
R2m×2m the linear elastic field. Vector τ a ∈ R2m are the
generalized forces acting on the arc space parameters.

To transform the dynamic model (22) into the manifold
space, we use a, ȧ, and ä w.r.t. qM, q̇M, and q̈M, respec-
tively. They are defined by

a =fM,II(qM)

ȧ =aJMq̇M

ä =aJ̇Mq̇M + aJMq̈M

 (23)

where qM = [qRe,1, qIm,1, . . . , qRe,m, qIm,m]⊤ ∈ R2m

represents the manifold parameters and q̇M ∈ R2m and
q̈M ∈ R2m is their first and second time derivative, respec-
tively. Here, aJM : R2m → R2m denotes the Jacobian of
fM,II(qM), i.e. ∂fM,II(qM)

∂qM
, while aJ̇M represents its time

derivative. The generalized forces τ a are transformed using

τM = aJ⊤
Mτ a. (24)

Inserting (23) and (24) into (22) yields the manifold model

MM(qM)q̈M +CM(qM, q̇M)q̇M+

gM(qM) +KMqM +DMq̇M = τM,
(25)

where the components are defined as

MM(qM) =aJ⊤
MMa(fM,II(qM))aJM

CM(qM, q̇M) =aJ⊤
MMa(fM,II(qM))aJ̇M+

aJ⊤
MCa(fM,II(qM), aJMq̇M)aJM

gM(qM) =aJ⊤
Mga(fM,II(qM))

KMqM =aJ⊤
MKafM,II(qM)

DM =aJ⊤
MDa(fM,II(qM))aJM

Note that the stiffness matrix KM and damping matrix
DM are constant on the manifold, with DM containing
only the segment’s damping coefficients dθ,i on its main
diagonal [18], while KM is derived from elastic potential
energy. Additionally, no external forces act on the TDCR.

F. Generalized Forces on Manifold

To map the tendon forces from joint space to manifold,
we use the the Jacobian MJq : Rm×n → R2m of fM,I(q),
i.e. ∂fM,I(q)

∂q . The generalized forces τM,i are transformed
using

F i =
MJ⊤

q τM,i =
2

n
M−1

P τM,i. (26)



By utilizing MPM
−1
P = I2×2 [22], where I2×2 is the

identity matrix, the inverse mapping results in

τM,i =
n

2
MPF i, (27)

where vector F i ∈ Rn represents the tendon forces.

III. CONTROL STRATEGIES

Controls in joint space typically require a separate con-
troller for each joint, where the outputs of all controllers
are subject to (1). The Clarke transform, on the other hand,
allows for a constraint-informed controller by utilizing a
linear mapping from n tendon displacements to the 2DoF
manifold. Therefore, it enables the control of each TDCR
segment exclusively on the manifold using only two control
parameters. Subsequently, we implement linear PID and PD
controllers. As depicted in Fig. 4, the output of the con-
trollers are the generalized forces on the manifold, which are
transformed into the joint space using (26). This may result
in negative tendon forces, which are physically infeasible.
To overcome the negative tendon forces, we propose three
strategies: clipping, redistribution, and shifting.

A. Clipping

This strategy is straightforward and it clips negative tendon
forces to zero. However, it alters the generalized forces
on the manifold when transforming back from joint space,
deviating from the controller’s original output torques. While
we observe that this method can maintain stability for linear
controllers, it can negatively impact control performance, as
shown in Sec. IV-C.

B. Redistributing

This strategy redistributes all tendon forces to tendons
with only positive tendon force by projecting the tendon
forces onto the segment’s bending direction. Focusing the
redistribution to the two tendons closest to the bending
direction ensures an analytical solution. While this method
maintains consistent generalized forces on the manifold, its
implementation is more complex than the shifting method,
which provides equivalent solution quality. For readability,
the redistribution approach is not further detailed here.

C. Shifting

Shifting the tendon forces by the segment’s smallest force,
defined as Fmin,i = min(F i), ensures that all tendon forces
remain non-negative. The back transformation preserves the
original generalized forces on the manifold

τM,i =
n

2
MPF shifted,i

=
n

2
MP (F init,i + Fmin,i1n)

=
n

2
MPF init,i,

(28)

where 1n is a vector with n ones. The additional term
n
2MPFmin,i1n simplifies to zero because

∑n
i=1 cos(ψi) =

0 and
∑n

i=1 sin(ψi) = 0 hold [22].

We note that shifting increases tendon tension and, there-
fore, it might change the stiffness of a TDCR [6], [26].
Furthermore, pretension relates to static frictional forces [6].
Thus, we hypothesize that static friction could be reduced by
adding more tendons that distribute the pretension to many
tendons.

IV. VALIDATION

We validate our proposed dynamic model and control
schemes through both simulations and experiments.

A. TDCR Parameters

We build a TDCR prototype depicted in Fig. 1 with one
segment and five tendons for the experimental evaluation,
where we make use of the OpenCR project. The backbone
is a Nitinol rod characterized by its material density ρb =
6400 kg/m3, elastic modulus Eb = 58MPa, diameter db =
1mm, and length l = 0.2m. Ten spacer disks are equally
distributed along the backbone, where each has a mass of
md = 0.81 g. Five tendons are equally distributed around the
circumference of a circle with a radius rd = 7mm. We also
use a quasi-direct-drive actuation unit [7] for each tendon. Its
proprioception allows for real-time tendon-tension control.

For the simulation, a TDCR with two segments is imple-
mented in MATLAB 2023b using the Dormand-Prince algo-
rithm for numerical integration. The material and geometric
parameters match those of the experimental setup. Addition-
ally, the damping coefficient dθ,i = 11.27 × 10−4 Nms for
(20) is experimentally identified assuming uniform damping
for each segment and using regression with a pseudo-inverse.

B. Simplifying Dynamic Model

We compare the total kinetic energies (9) with the rota-
tional energies of the system in (10), (11), and (14). Figure 5
shows that the translational kinetic energy dominates the
rotational energy. The proximal rotational movements lead to
translational movements in distal sections [27]. Additionally,
the slender shape of TDCRs results in a low moment
of inertia compared to the backbone’s mass, emphasizing
translational over rotational energy. Therefore, we neglect
the rotational terms in (10), (11), and (14).

Furthermore, the Coriolis and centrifugal forces are com-
pared with the total forces working in the system, see Fig. 6.
Coriolis and centrifugal forces are also negligible hereinafter
due to low velocities [27], and due to low masses in our
system.

Additionally, we omit the kinetic and potential energies
of the tendons, i.e., (11), (12), and (17). In our experimental
setup, the weight of the tendons is assumed to be negligible
compared to that of the spacer disks, as their contribution to
the total system mass is minimal.

C. Validation in Simulation

The model in simulation accounts for 2m−1 critical con-
figurations that arise when m individual segments approach
their straight configurations. While the dynamic equations
on the manifold are analytically well-conditioned [18], nu-
merical instabilities occur in these cases. To address this,



Fig. 4. Block diagram of the proposed controllers operating on the manifold: The desired trajectory, qRe,des and qIm,des, serves as input to the controller,
which outputs the generalized forces on the manifold τC. These are mapped into joint space using the blue blocks, which implement (26). The orange
block represents a saturation step, which prevents negative tendon forces by applying one of the proposed methods—clipping, redistribution, or shifting—as
detailed in Sec. III. The measured tendon displacements q are transformed onto the manifold using the green block, which follows (2). The diagram depicts
the PID controller, whereas the PD controller omits the integral component in the controller gains.
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symbolic limit expressions are derived for all such cases
and are automatically applied during the simulation if the
generalized coordinates fall below a threshold value of
{qRe,i, qIm,i} = 5× 10−6 m.

The system is controlled using a PID controller,
with initial configurations set to the straight posi-
tion [qRe,1, qIm,1, qRe,2, qIm,2]

⊤ = [0, 0, 0, 0]⊤m. Sine

wave trajectories are defined with initial frequencies of
[fRe,1, fIm,1, fRe,2, fIm,2]

⊤ = [0.1, 0.05, 0.15, 0.2]⊤Hz and
amplitudes of [qamp,Re,1, qamp,Im,1, qamp,Re,2, qamp,Im,2]

⊤ =
[0.01, 0.005, 0.005, 0.025]⊤m. The frequencies increase lin-
early by 0.005Hz/s over time to test the system’s tracking
performance under dynamic changes. These trajectories are
chosen as they capture a range of relevant dynamic effects,
including different bending and oscillation frequencies.

The simulation results shown in Fig. 7 illustrate the
tracking of sine wave trajectories on the manifold for a PID
controller. The force adaptation methods of clipping and
shifting are tested to prevent negative tendon forces. The
shifting approach ensures unchanged torques on the manifold
and outperforms the clipping approach, achieving an average
43.3% lower root-mean-square error (RMSE) across both
segments compared to clipping.

D. Experimental Validation

The experimental validation evaluates the system’s ability
to track a dynamic trajectory on the manifold. The desired
trajectory follows a bending motion in the segments’ xz-
plane with an initial frequency of 0.1Hz and amplitudes
[qamp,Re,1, qamp,Im,1]

⊤ = [0.01, 0.0]⊤m. The frequency in-
creases linearly at a rate of 0.005Hz/s, testing the con-
troller’s performance under dynamically changing condi-
tions.

Two controllers are evaluated, each utilizing the shifting
method: a PID controller with anti-windup for the integrative
term and a PD controller. The experimental results of the
position controllers are shown in Fig. 8. The trajectory
is tracked exclusively on the manifold, demonstrating the
effectiveness of the control strategies under real-world con-
ditions. Since the Clarke coordinates cannot be directly
observed, they are computed by transforming the measured
tendon displacements q onto the manifold using (2). This
enables direct comparison with the desired trajectory on the
manifold, see Fig. 4. The PID controller tracks the trajectory



Fig. 7. Simulation results for tracking of desired sine wave trajectories on the manifold with increasing frequencies with a PID controller. The shifting
and clipping methods are used to prevent negative tendon forces. The RMSE {eRe,i, eIm,i} is shown for performance evaluation.

Fig. 8. Experimental results for position control of a desired sine wave
trajectory on the manifold using a PID and PD controller as well as the
proposed shifting method. The desired trajectory corresponds to a bending
motion in the xz-plane of the TDCR segment. The RMSE {eRe, eIm} is
shown for performance evaluation.

robustly but is influenced by ripple effects caused by cogging
torque from the actuator units. The PD controller achieves
smoother trajectories while following the desired trajectory,
achieving an average 37.1% lower RMSE compared to the
PID controller.

V. DISCUSSION

In this section, we interpret the results of the proposed
dynamic model and control strategies.

A. Model Formulation

A key advantage over alternative formulations is its rep-
resentation on a 2DoF manifold. By leveraging the Clarke
transform, our dynamic modeling approach inherently satis-
fies tendon constraints (1). A constraint-informed approach
eliminates the need for additional constraint-handling and
is computationally efficient [22]. Unlike existing methods
that are limited to four tendons per segment [18], our
approach generalizes to TDCRs with n tendons per segment.
Consequently, the proposed model broadens the design space
without increasing computational overhead.

The assumption of uniform mass distribution along the
backbone leads to integral-based formulations of the kinetic
and potential energies over each segment’s length, see (10),
(11), (16), and (17). This results in complex symbolic
expressions [28], especially for multiple segments. However,
simulation results indicate a negligible impact of rotational
energies (Fig. 5) and Coriolis and centrifugal forces (Fig. 6),
allowing for their exclusion. Consequently, we can reduce the
symbolic complexity without significantly affecting accuracy,
which is in accordance with [27].

Although the dynamic model on the 2DoF manifold is
analytically singularity-free [18], we observe numerical in-
stabilities when TDCR segments approach their straight con-
figuration. These instabilities arise from poor conditioning
in the numerical integration routine. To address this, we use
symbolic limit models, which are automatically applied when
the segments approach a straight configuration. While this
method successfully enables continuous simulations with-
out bypassing critical configurations, it poses computational
challenges for multi-segment TDCRs in MATLAB’s symbolic
engine. Consequently, we rely on small-value substitutions,
which may introduce control instabilities, such as oscillatory
behavior in the segments. Nevertheless, these approaches
ensure stable simulation and model continuity, even near
straight configurations.

B. Control Results

The presented simulations evaluate different strategies
for handling negative tendon forces. While redistribution
maintains the generalized forces on the manifold, it con-
centrates all tendon forces on only two tendons (III-C),
counteracting the benefit of distributing actuation forces
across more tendons [6], and thus is not considered further in
our simulations. The shifting approach maintains consistent
generalized forces on the manifold (28) as well, preventing
physically infeasible forces without introducing instabilities
in control (Fig. 7). Moreover, by increasing the minimum
possible offset Fmin,i in (28), shifting also enables selective
stiffness adjustments of a TDCR segment. This effect is
achieved by modifying tendon pretension [6]. In future work,



the shifting method could be leveraged for stiffness tuning
in real-world applications without compromising position
control performance.

The simulations confirm that the proposed linear control
strategies enable stable and accurate trajectory tracking for
TDCRs with n tendons per segment and multiple segments.
Each segment can be controlled with two variables, sig-
nificantly reducing control complexity compared to nDoF
formulations (Fig. 4).

In our experiments, the linear controllers achieve real-time
control at 1 kHz [7]. The PID and PD controllers demonstrate
robust trajectory tracking, though cogging effects in the ac-
tuator units cause step-like motion, especially at low speeds
and low actuation forces (Fig. 8). The PID controller requires
an anti-windup strategy to prevent integrator windup, which
would otherwise lead to slow response times and poor
tracking accuracy. The PD controller achieves smoother tra-
jectories but introduces increasing errors with larger bending,
as the elastic backbone stores more energy [7]. For future
work, accurate dynamic modeling and compensation of the
cogging torque for the actuator units is desirable to further
improve control performance.

VI. CONCLUSION

We present a computationally efficient and generalized
dynamic model for TDCRs with multiple segments and an
arbitrary number of tendons per segment. Our proposed
model is based on the Clarke transform, the Euler-Lagrange
formalism, and the PCC assumption. This model allows us
to synthesize constraint-informed controllers.
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